8&%%5% University Press & Assessment

Ij‘ﬁ@liLM?é%&)thmt@iﬂésﬁ@%%S?ﬁmns for Stochastic Multiagent Dynamics in Populations and
Excerpt

More Information

Gillespie Algorithms for Stochastic Multiagent Dynamics 1

1 Introduction

We are compelled to understand and intervene in the dynamics of various com-
plex systems in which different elements, such as human individuals, interact
with each other. Such complex systems are often modeled by multiagent or
network-based models that explicitly dictate how each individual behaves and
influences other individuals. Stochastic processes are popular models for the
dynamics of multiagent systems when it is realistic to assume random elements
in how agents behave or in dynamical processes taking place in the system. For
example, random walks have been successfully applied to describe locomotion
and foraging of animals (Codling, Plank, & Benhamou, 2008; Okubo & Levin,
2001), dynamics of neuronal firing (Gabbiani & Cox, 2010; Tuckwell, 1988),
and financial market dynamics (Campbell, Lo, & MacKinlay, 1997; Mantegna
& Stanley, 2000) to name a few (see Masuda, Porter, and Lambiotte [2017] for
a review). Branching processes are another major type of stochastic processes
that have been applied to describe, for example, information spread (Eugster
et al., 2004; Gleeson et al., 2021), spread of infectious diseases (Britton, 2010;
Farrington, Kanaan, & Gay, 2003), cell proliferation (Jagers, 1975), and the
abundance of species in a community (McGill et al., 2007) as well as other
ecological dynamics (Black & McKane, 2012).

Stochastic processes in which the state of the system changes via discrete
events that occur at given points in time are a major class of models for dynam-
ics of complex systems (Andersson & Britton, 2000; Barrat, Barthélemy, &
Vespignani, 2008; Daley & Gani, 1999; de Arruda, Rodrigues, & Moreno,
2018; Kiss, Miller, & Simon, 2017a; Liggett, 2010; Shelton & Ciardo, 2014;
Singer & Spilerman, 1976; Van Mieghem, 2014). For example, in typical mod-
els for infectious disease spread, each infection event occurs at a given time ¢
such that an individual transitions instantaneously from a healthy to an infec-
tious state. Such processes are called Markov jump processes when they satisfy
certain independence conditions (Hanson, 2007), which we will briefly discuss
in Section 2.5. A jump is equivalent to a discrete event. In Markov jump pro-
cesses, jumps occur according to Poisson processes. In this volume, we focus
on how to simulate Markov jump processes. Specifically, we will introduce a
set of exact and computationally efficient simulation algorithms collectively
known as Gillespie algorithms. In the last technical section of this volume (i.e.,
Section 5), we will also consider more general, non-Markov, jump processes, in
which the events are generated in more complicated manners than by Poisson
processes. In the following text, we refer collectively to Markov jump processes
and non-Markov jump processes as jump processes.
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2 The Structure and Dynamics of Complex Networks

The Gillespie algorithms were originally proposed in their general forms by
Daniel Gillespie in 1976 for simulating systems of chemical reactions (Gilles-
pie, 1976), whereas several specialized variants had been proposed earlier; see
Section 3.1 for a brief history review. Gillespie proposed two different variants
of the simulation algorithm, the direct method, also known as Gillespie’s sto-
chastic simulation algorithm (SSA), or often simply the Gillespie algorithm,
and the first reaction method. Both the direct and first reaction methods have
found widespread use and in fields far beyond chemical physics. Furthermore,
researchers have developed many extensions and improvements of the original
Gillespie algorithms to widen the types of processes that we can simulate with
them and to improve their computational efficiency.

The Gillespie algorithms are practical algorithms to simulate coupled Pois-
son processes exactly (i.e., without approximation error). Here “coupled”
means that an event that occurs somewhere in the system potentially influ-
ences the likelihood of future events’ occurrences in different parts of the same
system. For example, when an individual in a population, v;, gets infected by a
contagious disease, the likelihood that a different healthy individual in the same
population, v;, will get infected in the near future may increase. If interactions
were absent, it would suffice to separately consider single Poisson processes,
and simulating the system would be straightforward.

We believe that the Gillespie algorithms are important tools for students
and researchers that study dynamic social systems, where social dynamics are
broadly construed and include both human and animal interactions, ecological
systems, and even technological systems. While there already exists a large
body of references on the Gillespie algorithms and their variants, most are
concise, mathematically challenging for beginners, and focused on chemical
reaction systems.

Given these considerations, the primary aim of this volume is to provide a
detailed tutorial on the Gillespie algorithms, with specific focus on simulat-
ing dynamic social systems. We will realize the tutorial in the first part of the
Element (Sections 2 and 3). In this part, we assume basic knowledge of calcu-
lus and probability. Although we do introduce stochastic processes and explain
the Gillespie algorithms and related concepts with much reference to networks,
we do not assume prior knowledge of stochastic processes or of networks. To
understand the coding section, readers will need basic knowledge of program-
ming. The second part of this Element (Sections 4 and 5) is devoted to a survey
of recent advancements of Gillespie algorithms for simulating social dynam-
ics. These advancements are concerned with accelerating simulations and/or
increasing the realism of the models to be simulated.
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2 Preliminaries

We review in this section mathematical concepts needed to understand the Gil-
lespie algorithms. In Sections 2.1 to 2.3, we introduce the types of models we
will be concerned with, namely jump processes, and in particular a simple type
of jump process termed Poisson processes. In Sections 2.4 to 2.6, we derive the
main mathematical properties of Poisson processes. The concepts and results
presented in Sections 2.1 to 2.6 are necessary for understanding Section 3,
where we derive the Gillespie algorithms. In Sections 2.7 and 2.8, we review
two simple methods for solving the models that predate the Gillespie algorithms
and discuss some of their shortcomings. These two final subsections motivate
the need for exact simulation algorithms such as the Gillespie algorithms.

2.1 Jump Processes

Before getting into the nitty-gritty of the Gillespie algorithms, we first explore
which types of systems they can be used to simulate. First of all, with the Gilles-
pie algorithms, we are interested in simulating a dynamic system. This can be,
for example, epidemic dynamics in a population in which the number of infec-
tious individuals varies over time, or the evolution of the number of crimes in
a city, which also varies over time in general. Second, the Gillespie algorithms
rely on a predefined and parametrized mathematical model for the system to
simulate. Therefore, we must have the set of rules for how the system or the
individuals in it change their states. Third, Gillespie algorithms simulate sto-
chastic processes, not deterministic systems. In other words, every time one
runs the same model starting from the same initial conditions, the results will
generally differ. In contrast, in a deterministic dynamical system, if we specify
the model and the initial conditions, the behavior of the model will always be
the same. Fourth and last, the Gillespie algorithms simulate processes in which
changes in the system are primarily driven by discrete events taking place in
continuous time. For example, when a chemical reaction obeying the chemical
equation A + B — C + D happens, one unit each of A and of B are consumed,
and one unit each of C and of D are produced. This event is discrete in that we
can count the event and say when the event happened, but it can happen at any
point in time (i.e., time is not discretized but continuous).

We refer to the class of mathematical models that satisfy these conditions and
may be simulated by a Gillespie algorithm as jump processes. In the remainder
of'this section, we explore these processes more extensively through motivating
examples. Then, we introduce some fundamental mathematical definitions and
results that the Gillespie algorithms rely on.
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4 The Structure and Dynamics of Complex Networks

2.2 Representing a Population as a Network

Networks are an extensively used abstraction for representing a structured
population, and Gillespie algorithms lend themselves naturally to simulate
stochastic dynamical processes taking place in networks. In a network represen-
tation, each individual in the population corresponds to a node in the network,
and edges are drawn between pairs of individuals that directly interact. What
constitutes an interaction generally depends on the context. In particular, for
the simulation of dynamic processes in the population, the interaction depends
on the nature of the process we wish to simulate. For simulating the spread
of an infectious disease, for example, a typical type of relevant interaction is
physical proximity between individuals.

Formally, we define a network as a graph G = (V, E), where V' = {1,2,...,N}
is the set of nodes, E = {(u,v): u,v € V} is the set of edges, and each edge (u, v)
defines a pair of nodes u, v € V'that are directly connected. The pairs (u, v) may
be ordered, in which case edges are directed (by convention from u to v), or
unordered, in which case edges are undirected (i.e., v connects to u if and only
if u connects to v). We may also add weights to the edges to represent different
strengths of interactions, or we may even consider graphs that evolve in time
(so-called temporal networks) to account for the dynamics of interactions in a
population.

We will primarily consider simple (i.e., static, undirected, and unweighted)
networks in our examples. However, the Gillespie algorithms apply to simu-
lated jump processes in all kinds of populations and networks. (For temporal
networks, we need to extend the classic Gillespie algorithms to cope with the
time-varying network structure; see Section 5.4.)

2.3 Example: Stochastic SIR Model in Continuous Time

We introduce jump processes and explore their mathematical properties by
way of a running example. We show how we can use them to model epi-
demic dynamics using the stochastic susceptible-infectious-recovered (SIR)
model.! For more examples (namely, SIR epidemic dynamics in metapopula-
tion networks, the voter model, and the Lotka—Volterra model for predator—prey
dynamics), see Section 3.4.

We examine a stochastic version of the SIR model in continuous time defined
as follows. We consider a constant population of N individuals (nodes). At
any time, each individual is in one of three states: susceptible (denoted by S;

' The SIR model was incidentally one of the first applications of a Gillespie-type algorithm in a
1953 article (Bartlett, 1953).
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Figure 1 Rules of state changes in the SIR model. An infectious individual
infects a susceptible neighbor at a rate 5. Each infectious individual recovers
at a rate y.

meaning healthy), infectious (denoted by /), or recovered (denoted by R). The
rules governing how individuals change their states are shown schematically in
Fig. 1. An infectious individual that is in contact with a susceptible individual
infects the susceptible individual in a stochastic manner with a constant infec-
tion rate B. Independently of the infection events, an infectious individual may
recover at any point in time, with a constant recovery rate p. If an infection
event occurs, the susceptible individual that has been infected changes its state
to I. If an infectious individual recovers, it transits from the I state to the R
state. Nobody leaves or joins the population over the course of the dynamics.
After reaching the R state, an individual cannot be reinfected or infect oth-
ers again. Therefore, R individuals do not influence the increase or decrease
in the number of S or I individuals. Because R individuals are as if they no
longer exist in the system, the R state is mathematically equivalent to having
died of the infection; once dead, an individual will not be reinfected or infect
others.

We typically start the stochastic SIR dynamics with a single infectious indi-
vidual, which we refer to as the source or seed, and Ngs = N — 1 susceptible
individuals (and thus no recovered individuals). Then, various infection and
recovery events may occur. The dynamics stop when no infectious individuals
are left. In this final situation, the population is composed entirely of suscepti-
ble and/or recovered individuals. Since both infection and recovery involve an
infectious individual, and there are no infectious individuals left, the dynam-
ics are stuck. The final number of recovered nodes, denoted by Mg, is called
the epidemic size, also known as the final epidemic size or simply the final
size.? The epidemic size tends to increase as the infection rate 8 increases or
as the recovery rate u decreases. Many other measures to quantify the behav-
ior of the SIR model exist (Pastor-Satorras et al., 2015). For example, we
may be interested in the time until the dynamics terminate or in the speed at
which the number of infectious individuals grows in the initial stage of the
dynamics.

2 The fraction Ny /N is typically also referred to as the epidemic size.
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6 The Structure and Dynamics of Complex Networks
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Figure 2 Stochastic SIR process on a square-grid network with six nodes. (a)
Status of the network at an arbitrary time z. (b) Status of the network after v4
has recovered. The values attached to the nodes indicate the rates of the
events that the nodes may experience next.

Consider Fig. 2(a), where individuals are connected as a network. We gener-
ally assume that infection may only occur between pairs of individuals that are
directly connected by an edge (called adjacent nodes). For example, the node
v4 can infect v; and vs but not v3. The network version of the SIR model is fully
described by the infection rate 3, the recovery rate u, the network structure, that
is, which node pairs are connected by an edge, and the choice of source node
to initialize the dynamics.

Mathematically, we describe the system by a set of coupled, constant-rate
jump processes; constant-rate jump processes are known as Poisson processes
(Box 1). Each possible event that may happen is associated to a Poisson proc-
ess, that is, the recovery of each infectious individual is described by a Poisson
process, and so is each pair of infectious and susceptible individuals where
the former may infect the latter. The Poisson processes are coupled because
an event generated by one process may alter the other processes by changing
their rates, generating new Poisson processes, or making existing ones disap-
pear. For example, after a node gets infected, it may in turn infect any of its
susceptible neighbors, which we represent mathematically by adding new Pois-
son processes. This coupling implies that the set of coupled Poisson processes
generally constitutes a process that is more complicated than a single Poisson
process.

In the following subsections we develop the main mathematical properties
of Poisson processes and of sets of Poisson processes. We will rely on these
properties in Section 3 to construct the Gillespie algorithms that can simu-
late systems of coupled Poisson processes exactly. Note that the restriction
to Poisson (i.e., constant-rate) processes is essential for the classic Gillespie
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algorithms to work; see Section 5 for recent extensions to the simulation of
non-Poissonian processes.

Box 1 Properties of Poisson Processes
A Poisson process is a jump process that generates events with a constant
rate, A.

Waiting-Time Distribution

The waiting times 7 between consecutive events generated by a Pois-
son process are exponentially distributed. In other words, 7 obeys the
probability density

Y(t) = e, (2.1
Memoryless Property

The waiting time left until a Poisson process generates an event given thata
time 7 has already elapsed since the last event is independent of z. This prop-
erty is called the memoryless property of Poisson processes and is shown
as follows:

_yt+T) He )
w(t+tlt) = Yo o

where /(¢ + 7|¢) represents the conditional probability density that the next

= e, (2.2)

event occurs a time ¢ + T after the last event given that time ¢ has already
elapsed; ¥(¢) = /too Y(t)dr = e~ is called the survival probability and is
the probability that no event takes place for a time ¢. The first equality in
Eq. (2.2) follows from the definition of the conditional probability. The
second equality follows from Eq. (2.1).

Superposition Theorem

Consider a set of Poisson processes indexed by i € {1,2,...,M}. The
superposition of the processes is a jump process that generates an event
whenever any of the individual processes does. It is another Poisson process
whose rate is given by

A=) A, (2.3)

Me

]
—_

where 4; is the rate of the ith Poisson process.
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8 The Structure and Dynamics of Complex Networks

Box 1 (Continued)

Probability of a Given Process Generating an Event in a Superposition of
Poisson Processes

Consider any given event generated by a superposition of Poisson pro-
cesses. The probability II; that the ith individual Poisson process has
generated this event is proportional to the rate of the ith process. In other
words,

I = A;/A. (2.4)

2.4 Waiting-Time Distribution for a Poisson Process

We derive in this subsection the waiting-time distribution for a Poisson process,
which characterizes how long one has to wait for the process to generate an
event. [t is often easiest to start from a discrete-time description when exploring
properties of a continuous-time stochastic process. Therefore, we will follow
this approach here. We use the recovery of a single node in the SIR model as
an example in our development.

Let us partition time into short intervals of length d¢. As 6t goes to zero, this
becomes an exact description of the continuous-time process. An infectious
individual recovers with probability udt after each interval given that it has not
recovered before.?

Formally, we define the SIR process in the limit 6z — 0. Then, you might
worry that the recovery event is unlikely to ever take place because the proba-
bility with which it happens during each time-step, that is, udt, goes toward 0
when the step size 6t does so. However, this is not the case; because the number
of time-steps in any given finite interval grows inversely proportional to 6¢, the
probability to recover in finite time stays finite. For example, if we use a differ-
ent step size 67 = 6¢/10, which is ten times smaller than the original 6z, then the
probability of recovery within the short duration of time 67 is indeed 10 times
smaller than uét (i.e., = uét). However, there are 67/6¢ = 10 windows of size
6t in one time window of size 6¢. So, we now have 10 chances for recovery to
happen instead of only one chance. The probability for recovery to occur in any
of these 10 time windows is equal to one minus the probability that it does not
occur. The probability that the individual does not recover in time 6t is equal

3 To address a common misunderstanding, we emphasize that u is a rate, not a probability, and
thus can be larger than one. Note, however, that ;61 is a probability and thus cannot be greater
than one.
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to (1 — uét)®/ 5t Therefore, the probability that the individual recovers in any
of the 6¢/6¢ windows is

pior = 1= (1= usn)®/%". (2.5)

Equation (2.5) does not vanish as we make 6 small. In fact, the Taylor expan-
sion of Eq. (2.5) in terms of 67 yields pi_r ~ (61/6t) X udt = udt, where ~
represents “approximately equal to”. Therefore, to leading order, the recovery
probabilities are the same between the case of a single time window of size 6¢
and the case of 6¢/6¢ time windows of size 7.

In the limit 6z — 0, the recovery event may happen at any continuous point
in time. We denote by 7 the waiting time from the present time until the time
of the recovery event. We want to determine the probability density function
(probability density or pdf for short) of 7, which we denote by ¥1r(7). By
definition, ¥1_,r(7)dt is equal to the probability that the recovery event happens
in the interval [7,7 + &¢) for an infinitesimal 6t (i.e., for 6 — 0). To calculate
Y1-r(T), we note that the probability that the event occurs after » = 7/6¢ time
windows, denoted by p1_r(7), is equal to the probability that it did not occur
during the first » time windows and then occurs in the (» + 1)th window. This
probability is equal to

Pior(r) = (1 — ust)" x ust = (1 — udt)/* ust. (2.6)

The first factor on the right-hand side of Eq. (2.6) is the probability that the
event has not happened before the (» + 1)th window; it is simply equal to the
probability that the event has not happened during a single window, raised to
the power of . The second factor is the probability that the event happens in
the (r + 1)th window. By applying the identity lim,_o(1 + x)'/* = e, known
from calculus (see Appendix), with x = —udt to Eq. (2.6), we obtain the pdf of
the waiting time as follows:

P1oRr(7/61)
ot

=y lim (1 — 607/
H a1 =00

Y1or(T) = 61}1_1?0

T

-n
= i 1 — udt 1/(=po1)
| im0 =
= pe M7, 2.7

Equation (2.7) shows the intricate connection between the Poisson process and
the exponential distribution: the waiting time of a Poisson process with rate u
(here, specifically the recovery rate) follows an exponential distribution with
rate u (Box 1). This fact implies that the mean time we have to wait for the
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10 The Structure and Dynamics of Complex Networks

recovery event to happen is 1/u. The exponential waiting-time distribution
actually completely characterizes the Poisson process. In other words, the Pois-
son process is the only jump process that generates events separated by waiting
times that follow a fixed exponential distribution.

If we consider the infection process between a pair of S and I nodes in
complete isolation from the other infection and recovery processes in the pop-
ulation, then exactly the same argument (Eq. (2.7)) holds true. In other words,
the time until infection takes place between the two nodes is exponentially
distributed with rate 3, that is,

Usoi(r) = BePT. (2.8)

However, in practice the infection process is more complicated than the recov-
ery process because it is coupled to other processes. Specifically, if another
process generates an event before the infection process does, then Eq. (2.8)
may no longer hold true for the infection process in question. For example,
consider a node v; that is currently susceptible and an adjacent node v, that
is infectious, as in Fig. 2. For this pair of nodes, two events are possible: v,
may infect vi, or v, may recover. As long as neither of the events has yet taken
place, either of the two corresponding Poisson processes may generate an event
at any point in time, following Egs. (2.8) and (2.7), respectively. However, if
v, recovers before it infects vy, then the infection event is no longer possible,
and so Eq. (2.8) no longer holds. We explore in the following two subsections
how to mathematically deal with this coupling.

2.5 Independence and Interdependence of Jump Processes

Most models based on jump processes and most simulation methods, includ-
ing the Gillespie algorithms, implicitly assume that different concurrent jump
processes are independent of each other in the sense that the internal state of
one process does not influence another. This notion of independence may be
a source of confusion because a given process may depend on the events gen-
erated earlier by other processes, that is, the processes may be coupled, as we
saw is the case for the infection processes in the SIR model. In this section, we
sort out the notions of independence and coupling and what they mean for the
types of jump processes we want to simulate. We will also explore another type
of independence of Poisson processes, which is their independence of the past,
called the memoryless property.

We can state the independence assumption as the condition that different
processes are only allowed to influence each other by changing the state of the
system. In other words, at any point in time each process generates an event
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