Cambridge University Press & Assessment 978-1-009-23615-7 — A Student's Guide to the Navier-Stokes Equations Justin W. Garvin Table of Contents <u>More Information</u>

Contents

	Preface		<i>page</i> ix	
	Ackn	nowledgments	xi	
1	Mass Conservation and the Continuity Equation		1	
	1.1	Conservation in Fluid Mechanics	1	
	1.2	Conservation of Mass in One Dimension	4	
	1.3	The Continuity Equation	8	
	1.4	Discussion of the Continuity Equation	16	
	Prob	lems	30	
2	The Material Derivative: The First Step to the Navier–Stokes			
	Equ	ations	32	
	2.1	Lagrangrian and Eulerian Descriptions	33	
	2.2	The Advection and Inviscid Burgers' Equation	40	
	2.3	The Material Derivative and the Continuity Equation	51	
	2.4	The Material Derivative in the Navier–Stokes Equations	55	
	2.5	Take Home Points	57	
	Prob	lems	58	
3	Forc	e Balance, the Stress Tensor, and the Navier–Stokes		
	Equations		60	
	3.1	Forces on a Fluid and the Stress Tensor	60	
	3.2	General Force Balance: Cauchy's First Law of Motion	69	
	3.3	The Form of the Stress Tensor	71	
	3.4	The Navier–Stokes Equations Finally	80	
	3.5	Incompressible Flow	94	
	Problems		100	

viii

4	The Navier–Stokes Equations: Another Approach			
	4.1	Eulerian Approach to the Navier–Stokes Equations	102	
	4.2	Take a Breath: Let's Review So Far	108	
	4.3	Incompressible Equations in 2D Cartesian Coordinates	112	
	4.4	Boundary Conditions	114	
	4.5	Examples	116	
	Prob	lems	122	
5	The Energy Equation and a Discussion on Diffusion			
	and Advection		124	
	5.1	Conservation of Energy	124	
	5.2	A Very Common Form of the Energy Equation	140	
	5.3	Initial Discussion of the Energy Equation	147	
	5.4	Full Governing Equations of Fluid Motion	153	
	5.5	Diffusion	155	
	5.6	Convection–Diffusion Equation: Combined Advection		
		and Diffusion	162	
	5.7	The Boundary Layer	165	
	5.8	Boundary Conditions for the Energy Equation	173	
	5.9	Examples	174	
	Prob	lems	180	
6	Nondimensionalization and Scaling		182	
	6.1	The Idea Behind Nondimensionalization	182	
	6.2	The Basics of Scaling Analysis	183	
	6.3	Couette Flow Revisited with Nondimensionalization	189	
	6.4	Pressure-driven Flow with Nondimensionalization	194	
	6.5	Scaling the Incompressible Governing Equations	199	
	6.6	Incompressible Flow with a Compressible Fluid	205	
	6.7	Scaling to Obtain the Boundary Layer Equations	208	
	6.8	A Final Note	216	
	Problems			
	Furt	her Reading	220	
	Index		221	

Contents