Index

advection, 162
definition, 40
distinction with convection, 164
equation, 40, 163
in a boundary layer, 165
advective transport term, 39, 82

body force, 60
expression, 61
boundary condition, 114
Dirichlet, 114
energy equation, 173
Neumann, 115
energy equation, 173
no slip, 115
Robin, 115
energy equation, 174
boundary layer, 165, 169
and Reynolds number, 171, 213
concept and history, 210
equations, 215
estimate of thickness, 172, 213
thermal, 169
thickness for flow past a flat plate, 215
Burgers’ equation, 165
inviscid, 40
discussion, 46

Cauchy’s first law of motion, 69
coefficient of thermal expansion, 132
conduction, 148
scaling, 184
conservation
general idea, 3
of energy, 125
basic equation, 126

of mass, 3
basic equation, 4
of momentum, 102
basic equation, 103
time rate basis, 3
continuity equation
conservation form, 16, 110
in Cartesian coordinates, 17
terms labeled, 17, 18
general discussion, 16
in one dimension, 7
incompressible flow, 27
in Cartesian coordinates, 28
integral form, 14, 111
terms labeled, 18
Lagrangian form, 51, 108
non-conservation form, 51, 109
the unknowns, 22
continuum mechanics, 2
control volume, 4
convection, 164
convection–diffusion equation, 162
Couette flow, 116
scaled equations, 192
temperature profile, 174
velocity profile, 119
creeping flow, see Stokes flow
different forms of the equations, 57
differential equation, 7
partial differential equation (PDE), 7
diffusion, 162
general discussion, 155
thermal, 148
diffusive transport, 91

© in this web service Cambridge University Press & Assessment  www.cambridge.org
diffusive transport term, 82
thermal (conduction), 148
dimensional analysis, 182
divergence
for Cartesian coordinates, 16
general idea, 16
in matrix form, 17
of a vector, 15
divergence theorem, 15
general discussion, 18
mathematical definition, 22
dot product, 11
calculation in Cartesian coordinates, 11
double dot product, 141
dynamic viscosity, 75
energy
definition of, 128
specific, 126
energy equation
conservation form, 138
general discussion of, 147
in terms of specific heat at constant pressure, 146
in terms of specific heat at constant volume, 146
incompressible flow
in Cartesian coordinates, 152
terms labeled, 149
with constant thermal conductivity, 149
integral form, 138
Lagrangian form, 140
non-conservation form, 139
starting point, 127
terms labeled, 147
thermal energy equation in Lagrangian form, 143
energy flow rate, 127
equation of state, 25
for an ideal gas, 25, 153
Euler’s equation, 85, 208
Eulerian description
discussion, 33
general idea, 36
field variables, 22
first law of thermodynamics, 124
fluid element, 33
flux, 13
general definition, 13
of energy, 127
Fourier’s law, 135
Fourier, Jean-Baptise Joseph, 133
Froude number, 202
fully-developed flow, 117
gas constant, 26
general solution, 114
Couette flow, 118
temperature, 176
pressure-driven flow
temperature, 178
governing equations, 152
incompressible flows, 153
overview, 1$table description, 2
heat, 133
sign convention, 125
heat equation, 159
heat rate
expression using a volume integral, 135
expression using an area integral, 135
Heinrich Blasius, 210
hydrostatic pressure, 89
incompressible flow, 94
constant density definition, 27
general discussion, 27
related to volume change of fluid element, 54
relation to Mach number, 208
inertia term, 82
initial condition, 41, 114
integrating out the spatial dependence, 14
internal energy
specific, 128
inviscid flow, 85, 208
isothermal compressibility
coefficient, 132
isothermal expansion coefficient, 148
isotropic, 72
Lagrangian description
discussion, 33
general idea, 36
Laplace’s equation, 157
averaging property, 159
Laplacian operator, 96
operating on the velocity vector, 97
local time derivative, 39
Ludwig Prandtl, 210
mass flow rate
as an integral, 12
expression as a volume integral, 137
equation for one dimension, 6
expression as an area integral, 136
obtaining, 5
sign convention, 126
through area, 11
pressure
temperature profile, 122
data, 5
pressure gradient, 83
through area, 11
pressure-driven flow, 120
temperature profile, 177
mass flux, 13
property, 126
in the x-direction, 6
intensive, 127
mass of arbitrary system, 8
non-conservation form, 80, 109
material derivative
advective transport term, 37
terms labeled, 80
as an operator, 37
Newtonian fluid, 75
of velocity vector, 38
property, 126
reason for upper case ‘D’, 39
mechanical energy equation, 142
using the nabla symbol, 37
mechanical pressure, 79
scale d
nu, 15
in Cartesian coordinates, 16
Navier–Stokes equations
conservation form, 107, 110
characteristic scales, 185
incompressible flow
conservation form, 107
closed system, 126
in Cartesian coordinates, 113
terms labeled, 80
integral form, 107, 111
Newtonian fluid, 75
Lagrangian description, 37
non-conservation form, 98, 109
local time derivative term, 37
integral form, 106, 111
of velocity vector, 38
of volume of fluid element, 53
reason for upper case ‘D’, 39
using the nabla symbol, 37
mechanical energy equation, 142
mechanical pressure, 79
nabla, 15
in Cartesian coordinates, 16
Navier–Stokes equations
conservation form, 107, 110
incompressible flow
conservation form, 107
in Cartesian coordinates, 113
integral form, 107, 111
Lagrangian form, 98
non-conservation form, 98, 109
integral form, 106, 111
Lagrangian form, 80, 108
non-conservation form, 80, 109
terms labeled, 80
Newtonian fluid, 75
nondimensionalization, see scaling
normal stress, 67
specific internal energy
material derivative of in terms of density and
temperature, 145
temperature profile, 177
outward normal, see unit normal
Péclet number, 167
second coefficient of viscosity, 73
partial derivative, 7
relationship to dynamic viscosity, 78
partial differential equation (PDE), 7, 41
second law of thermodynamics, 134, 155
Poiseuille flow, 120
shear stress, 67, 74
power
definition, 126
source
in the energy equation, 137
specific enthalpy, 131
specific heat
constant pressure, 130
equation, 132
expression, 130
criteria
second law of thermodynamics, 134, 155
steady state, 40
general discussion, 23
state principle, 144
Index

Stokes flow, 201  
stress tensor  
divergence of, 70  
Newtonian fluid in an incompressible flow, 98  
dotted with normal, 65  
for a Newtonian fluid, 79  
for incompressible flow, 94  
in Cartesian coordinates, 79  
various terms, 71  
general description, 62  
in Cartesian coordinates, 63  
relationship to traction vector, 63  
symmetry of, 67  
stress vector, 61  
summation of forces  
area integral version, 69  
volume integral version, 69  
surface force, 60  
in terms of traction vector, 61  
surroundings, 125  
system, 3  
Taylor series, 34, 35  
tensor product, 104  
thermal conductivity  
reason for being positive, 134  
thermal diffusivity, 160  
thermal energy equation, 142  
traction vector, see stress vector  
turbulence, 216, 217  
unit normal, 10  
velocity gradient, 75  
in Cartesian coordinates, 76  
velocity vector  
Cartesian components, 9  
normal component, 11  
viscous dissipation, 141, 148  
in Cartesian coordinates, 151  
viscous force term, 82, 91, 99  
volume change force, 89  
volume change term, 73  
volumetric heat generation, 138  
vorticity, 217  
work  
pdV work, 131  
sign convention, 125