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Preface

This book is based on notes compiled during the many years I taught the course “Ap-

plied Functional Analysis” in the first year of the master’s programme at Delft Uni-

versity of Technology, for students with prior exposure to the basics of Real Analysis

and the theory of Lebesgue integration. Starting with the basic results of the subject

covered in a typical Functional Analysis course, the text progresses towards a treatment

of several advanced topics, including Fredholm theory, boundary value problems, form

methods, semigroup theory, trace formulas, and some mathematical aspects of Quantum

Mechanics. With a few exceptions in the later chapters, complete and detailed proofs

are given throughout. This makes the text ideally suited for students wishing to enter

the field.

Great care has been taken to present the various topics in a connected and integrated

way, and to illustrate abstract results with concrete (and sometimes nontrivial) appli-

cations. For example, after introducing Banach spaces and discussing some of their

abstract properties, a substantial chapter is devoted to the study of the classical Banach

spaces C(K), Lp(Ω), M(Ω), with some emphasis on compactness, density, and approxi-

mation techniques. The abstract material in the chapter on duality is complemented by a

number of nontrivial applications, such as a characterisation of translation-invariant sub-

spaces of L1(Rd) and Prokhorov’s theorem about weak convergence of probability mea-

sures. The chapter on bounded operators contains a discussion of the Fourier transform

and the Hilbert transform, and includes proofs of the Riesz–Thorin and Marcinkiewicz

interpolation theorems. After the introduction of the Laplace operator as a closable op-

erator in Lp, its closure ∆ is revisited in later chapters from different points of view: as

the operator arising from a suitable sesquilinear form, as the operator −∇
?
∇ with its

natural domain, and as the generator of the heat semigroup. In parallel, the theory of its

Gaussian analogue, the Ornstein–Uhlenbeck operator, is developed and the connection

with orthogonal polynomials and the quantum harmonic oscillator is established. The

chapter on semigroup theory, besides developing the general theory, includes a detailed

treatment of some important examples such as the heat semigroup, the Poisson semi-

ix
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x Preface

group, the Schrödinger group, and the wave group. By presenting the material in this

integrated manner, it is hoped that the reader will appreciate Functional Analysis as a

subject that, besides having its own depth and beauty, is deeply connected with other

areas of Mathematics and Mathematical Physics.

In order to contain this already lengthy text within reasonable bounds, some choices

had to be made. Relatively abstract subjects such as topological vector spaces, Banach

algebras, and C?-algebras are not covered. Weak topologies are introduced ad hoc, the

use of distributions in the treatment of weak derivatives is avoided, and the theory of

Sobolev spaces is developed only to the extent needed for the treatment of boundary

value problems, form methods, and semigroups. The chapter on states and observables

in Quantum Mechanics is phrased in the language of Hilbert space operators.

A work like this makes no claim to originality and most of the results presented here

belong to the core of the subject. Not just the statements, but often their proofs too, are

part of the established canon. Most are taken from, or represent minor variations of,

proofs in the many excellent Functional Analysis textbooks in print.

Special thanks go to my students, to whom I dedicate this work. Teaching them

has always been a great source of inspiration. Arjan Cornelissen, Bart van Gisbergen,

Sigur Gouwens, Tom van Groeningen, Sean Harris, Sasha Ivlev, Rik Ledoux, Yuchen

Liao, Eva Maquelin, Garazi Muguruza, Christopher Reichling, Floris Roodenburg, Max

Sauerbrey, Cynthia Slotboom, Joop Vermeulen, Matthijs Vernooij, Anouk Wisse, and

Timo Wortelboer pointed out many misprints and more serious errors in earlier ver-

sions of this manuscript. The responsibility for any remaining ones is of course with

me. A list with errata will be maintained on my personal webpage. I thank Emiel Lorist,

Lukas Miaskiwskyi, and Ivan Yaroslavtsev for suggesting some interesting problems,

Jock Annelle and Jay Kangel for typographical comments, and Francesca Arici, Martijn

Caspers, Tom ter Elst, Markus Haase, Bas Janssens, Kristin Kirchner, Klaas Landsman,

Ben de Pagter, Pierre Portal, Fedor Sukochev, Walter van Suijlekom, and Mark Veraar

for helpful discussions and valuable suggestions.

A significant portion of this book was written in the extraordinary circumstances of

the global pandemic. The sudden decrease in overhead and the opportunity of work-

ing from home created the time and serenity needed for this project. Paraphrasing the

epilogue of W. F. Hermans’s novel Onder Professoren (Among Professors), the book

was written entirely in the hours otherwise spent on departmental meetings, committee

meetings, evaluations, accreditations, visitations, midterms, reviews, previews, etcetera,

and so forth. All that precious time has been spent in a very useful way by the author.

Delft, April 2022
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Preface xi

In the present corrected version we have fixed numerous small misprints, a few misfor-

mulations and editing errors, as well as a small number of mathematical oversights. In

some proofs, additional details have been written out, and some arguments have been

streamlined. I thank Jan Maas for some valuable suggestions in this direction.

Delft, May 2023
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Notation and Conventions

We write N = {0,1,2, . . .} for the set of nonnegative integers, and Z, Q, R, and C for

the sets of integer, rational, real, and complex numbers. Whenever a statement is valid

both over the real and complex scalar field we use the symbol K to denote either R or C.

Given a complex number z = a+bi with a,b ∈ R, we denote by z = a−bi its complex

conjugate and by Rez = a and Imz = b its real and imaginary parts. We use the symbols

D and T for the open unit disc and the unit circle in the complex plane, respectively.

The indicator function of a set A is denoted by 1A. In the context of metric and normed

spaces, B(x;r) denotes the open ball with radius r centred at x. The interior and closure

of a set S are denoted by S◦ and S, respectively. We write S′ ⊆ S to express that S′ is a

subset of S. The complement of a set S is denoted by {S when the larger ambient set,

of which S is a subset, is understood. We write |x| both for the absolute value of a real

number x ∈ R, the modulus of a complex number x ∈ C, and the euclidean norm of an

element x = (x1, . . . ,xd) ∈Kd. When dealing with functions f defined on some domain

f , we write f ≡ c on S ⊆ D if f (x) = c for all x ∈ S. The null space and range of a

linear operator A are denoted by N(A) and R(A) respectively. When A is unbounded, its

domain is denoted by D(A). A comprehensive list of symbols is contained in the index.

Unless explicitly otherwise stated, the symbols X and Y denote Banach spaces and H

and K Hilbert spaces. In order to avoid frequent repetitions in the statements of results,

these spaces are always thought of as being given and fixed. Conventions with this re-

gard are usually stated at the beginning of a chapter or, in some cases, at the beginning

of a section. The same pertains to the choice of scalar field. In Chapters 1–5, the scalar

field K can be either R or C, with a small number of exceptions where this is explicitly

stated, such as in our treatment of the Hahn–Banach theorem, the Fourier transform, and

the Hilbert transform. From Chapter 6 onwards, spectral theory and Fourier transforms

are used extensively and the default choice of scalar field is C. In many cases, however,

statements not explicitly involving complex numbers or constructions involving them

admit counterparts over the real scalars which can be obtained by simple complexifica-

tion arguments. We leave it to the interested reader to check this in particular instances.

xii
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