FOURIER ANALYSIS

Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. This diversity of interest is often overlooked, but in this much-loved book, Tom Körner provides a shop window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy and electrical engineering. The prerequisites are few (a reader with knowledge of second- or third-year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining.

This edition of Körner's 1989 text includes a foreword written by Professor Terence Tao introducing it to a new generation of fans.

T. W. Körner is Emeritus Professor of Fourier Analysis at the University of Cambridge. His other books include *The Pleasures of Counting* (Cambridge, 1996) and *Where Do Numbers Come From*? (Cambridge, 2019).

Cambridge University Press & Assessment 978-1-009-23005-6 — Fourier Analysis T. W. Körner , Foreword by Terence Tao Frontmatter More Information

CAMBRIDGE MATHEMATICAL LIBRARY

Cambridge University Press has a long and honourable history of publishing in mathematics and counts many classics of the mathematical literature within its list. Some of these titles have been out of print for many years now and yet the methods which they espouse are still of considerable relevance today.

The *Cambridge Mathematical Library* provides an inexpensive edition of these titles in a durable paperback format and at a price that will make the books attractive to individuals wishing to add them to their own personal libraries. Certain volumes in the series have a foreword, written by a leading expert in the subject, which places the title in its historical and mathematical context.

A complete list of books in the series can be found at www.cambridge.org/mathematics. Recent titles include the following:

Attractors for Semigroups and Evolution Equations OLGA A. LADYZHENSKAYA

> *Fourier Analysis* T. W. KÖRNER

Transcendental Number Theory ALAN BAKER

An Introduction to Symbolic Dynamics and Coding (Second Edition) DOUGLAS LIND & BRIAN MARCUS

> Reversibility and Stochastic Networks F. P. KELLY

The Geometry of Moduli Spaces of Sheaves (Second Edition) DANIEL HUYBRECHTS & MANFRED LEHN

Smooth Compactifications of Locally Symmetric Varieties (Second Edition) AVNER ASH, DAVID MUMFORD, MICHAEL RAPOPORT & YUNG-SHENG TAI

> Markov Chains and Stochastic Stability (Second Edition) SEAN MEYN & RICHARD L. TWEEDIE

FOURIER ANALYSIS

T. W. KÖRNER University of Cambridge

With a Foreword by

TERENCE TAO University of California, Los Angeles

Cambridge University Press & Assessment 978-1-009-23005-6 — Fourier Analysis T. W. Körner , Foreword by Terence Tao Frontmatter More Information

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009230056 DOI: 10.1017/9781009230063

© Cambridge University Press 1988

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 1988 First paperback edition (with corrections) 1989 Reprinted with Foreword 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-23005-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-009-23005-6 — Fourier Analysis T. W. Körner , Foreword by Terence Tao Frontmatter <u>More Information</u>

> ... mathematical ideas originate in empirics, although the genealogy is sometimes long and obscure. But, once they are so conceived, the subject begins to live a peculiar life of its own and is better compared to a creative one, governed by almost entirely aesthetical motivations, than to anything else and, in particular, to an empirical science. There is, however, a further point which, I believe, needs stressing. As a mathematical discipline travels far from its empirical source, or still more, if it is a second and third generation only indirectly inspired by ideas coming from 'reality', it is beset with very grave dangers. It becomes more and more purely aestheticising, more and more purely 1'art pour 1'art. This need not be bad, if the field is surrounded by correlated subjects, which still have closer empirical connections, or if the discipline is under the influence of men with an exceptionally well-developed taste. But there is a grave danger that the subject will develop along the line of least resistance, that the stream, so far from its source, will separate into a multitude of insignificant branches, and that the discipline will become a disorganised mass of details and complexities. In other words, at a great distance from its empirical source, or after much 'abstract' inbreeding, a mathematical subject is in danger of degeneration.

> > von Neumann (from the first paper in his collected works)

Some calculus tricks are quite easy. Some are enormously difficult. The fools who write the text books of advanced mathematics – and they are mostly clever fools – seldom take the trouble to show you how easy the easy calculations are. On the contrary, they seem to desire to impress you with their tremendous cleverness by going about it in the most difficult way.

Being myself a remarkably stupid fellow, I have had to unteach myself the difficulties, and now beg to present to my fellow fools the parts that are not hard. Master these thoroughly, and the rest will follow. What one fool can do, another can.

(from Calculus Made Easy by Sylvanus P. Thompson)

'Now,' Herbie says, 'wait a minute. A story goes with it.' (from *A Story Goes With It* by Damon Runyon)

Contents

Foreword by Terence Tao	<i>page</i> xi
Preface	xiii
Part I Fourier Series	1
1 Introduction	3
2 Proof of Fejér's theorem	6
3 Weyl's equidistribution theorem	11
4 The Weierstrass polynomial approximation theorem	15
5 A second proof of Weierstrass's theorem	19
6 Hausdorff's moment problem	21
7 The importance of linearity	24
8 Compass and tides	28
9 The simplest convergence theorem	32
10 The rate of convergence	35
11 A nowhere differentiable function	38
12 Reactions	42
13 Monte Carlo methods	46
14 Mathematical Brownian motion	50
15 Pointwise convergence	56
16 Behaviour at points of discontinuity I	59
17 Behaviour at points of discontinuity II	62
18 A Fourier series divergent at a point	67
19 Pointwise convergence, the answer	74
Part II Some Differential Equations	77
20 The undisturbed damped oscillator does not explode	79
	vii

viii	Contents	
21	The disturbed damped linear oscillator does not explode	83
22	Transients	88
23	The linear damped oscillator with periodic input	93
24	A non-linear oscillator I	99
25	A non-linear oscillator II	104
26	A non-linear oscillator III	113
27	Poisson summation	116
28	Dirichlet's problem for the disc	121
29	Potential theory with smoothness assumptions	124
30	An example of Hadamard	131
31	Potential theory without smoothness assumptions	134
Par	rt III Orthogonal Series	143
32	Mean square approximation I	145
33	Mean square approximation II	150
34	Mean square convergence	155
35	The isoperimetric problem I	159
36	The isoperimetric problem II	166
37	The Sturm–Liouville equation I	170
38	Liouville	175
39	The Sturm–Liouville equation II	179
40	Orthogonal polynomials	185
41	Gaussian quadrature	191
42	Linkages	197
43	Tchebychev and uniform approximation I	201
44	The existence of the best approximation	207
45	Tchebychev and uniform approximation II	212
Pai	rt IV Fourier Transforms	219
46	Introduction	221
47	Change in the order of integration I	226
48	Change in the order of integration II	230
49	Fejér's theorem for Fourier transforms	240
50	Sums of independent random variables	245
51	Convolution	253
52	Convolution on \mathbb{T}	259
53	Differentiation under the integral	265
54	Lord Kelvin	270

	Contents	ix
55	The best emotion	274
55 56	The near equation	274
50 57	The age of the earth I	282
50	The age of the earth III	283
50	Weierstress's proof of Weierstress's theorem	209
59 60	The inversion formula	292
61	Simple discontinuities	293
62	Host flow in a somi infinite rod	300
62	A second approach	215
64	The wave equation	313
04 65	The transationtic cable I	324
66	The transationtic cable I	332
67	Uniqueness for the heat equation I	333
69	Uniqueness for the heat equation I	244
00 60	The law of errors	244
09 70	The control limit theorem I	347
70	The central limit theorem II	349
/1		557
Par	t V Further Developments	363
1 41	t v Turtner Developments	505
72	Stability and control	365
73	Instability	368
74	The Laplace transform	372
75	Deeper properties	379
76	Poles and stability	386
77	A simple time delay equation	395
78	An exception to a rule	403
79	Many dimensions	407
80	Sums of random vectors	413
81	A chi squared test	418
82	Haldane on fraud	425
83	An example of outstanding statistical treatment I	429
84	An example of outstanding statistical treatment II	434
85	An example of outstanding statistical treatment III	436
86	Will a random walk return?	443
87	Will a Brownian motion return?	451
88	Analytic maps of Brownian motion	455
89	Will a Brownian motion tangle?	461
90	La Famille Picard va á Monte Carlo	467

x Contents	
Part VI Other Directions	471
91 The future of mathematics viewed from 1800	473
92 Who was Fourier? I	475
93 Who was Fourier? II	478
94 Why do we compute?	481
95 The diameter of stars	484
96 What do we compute?	488
97 Fourier analysis on the roots of unity	491
98 How do we compute?	497
99 How fast can we multiply?	500
100 What makes a good code?	503
101 A little group theory	506
102 A good code?	509
103 A little more group theory	513
104 Fourier analysis on finite Abelian groups	519
105 A formula of Euler	525
106 An idea of Dirichlet	532
107 Primes in some arithmetical progressions	539
108 Extension from real to complex variable	546
109 Primes in general arithmetical progressions	552
110 A word from our founder	558
Appendix A: The circle \mathbb{T}	560
Appendix B: Continuous function on closed bounded sets	563
Appendix C: Weakening hypotheses	565
Appendix D: Ode to a galvanometer	575
Appendix E: The principle of the argument	577
Appendix F: Chase the constant	580
<i>Appendix G:</i> Are share prices in Brownian motion?	581
Index	585

Foreword **TERENCE TAO**

Mathematical monographs tend to fall, broadly speaking, into two categories. On one hand, one has the undergraduate texts, in which the basics of some subject are covered extensively and systematically, with many examples and exercises for the student to practice core techniques and concepts. On the other hand, one has the graduate texts, where the author assumes that the student is mathematically mature enough to recognise and fill in routine arguments and standard calculations, and is now ready to proceed to the cutting edge of the field.

This book is a rare example of one that stakes a middle ground: it does not comprehensively introduce the fundamental definitions and results in Fourier analysis, but instead provides a sampler of bite-sized (and largely stand-alone) examples of how the themes of the subject (in particular, that of decomposing a general function into simple oscillating modes, and then reconstituting these modes back together to reconstruct the original function) arise naturally in both mathematical and practical contexts.

One feature of this book that is particularly valuable for beginning students is that standard arguments in analysis that would be very quickly breezed through in more advanced texts (using phrases such as 'by a routine scaling argument', 'by linearity we may assume without loss of generality that', and so forth) are instead carefully worked through by the author. I would encourage such students to study and internalise these arguments when they are presented in this text, as they will certainly encounter them many more times in their studies and their research.

The text does not need to be read in a linear fashion; I myself spent many pleasant hours as a graduate student browsing through whatever topics in the book took my fancy, whether it was reading about the fascinating history of the transatlantic cable,

xii

Foreword

the application of Fourier-analytic ideas to locate primes in arithmetic progressions, or using Fourier-analytic solutions to the heat equation to estimate the age of the Earth. I hope you find this book as enjoyable to dip into as I have.

DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES CA 90095-1555

Preface

This book is meant neither as a drill book for the successful nor as a lifebelt for the unsuccessful student. Rather, it is intended as a shop window for some of the ideas, techniques and elegant results of Fourier analysis.

I have tried to write a series of interlinked essays accessible to a student with a good general background in mathematics such as an undergraduate at a British university is supposed to have after two years of study. If the reader has not covered the relevant topic, say contour integration or probability, then she can usually omit, or better, skim through any chapters which involve this topic without impairing her ability to cope with subsequent chapters.

It is a consequence of the plan of this book that nothing is done in great depth or generality. If the reader wants to acquire facility with the Laplace transform or to study the L^2 convergence of the Fourier series of an L^2 function she must look elsewhere. It is very much easier to acquire a skill or to generalise a theorem when one is under the pressure of immediate necessity than when one is told that such a skill or generalisation might just possibly come in useful some day.

Another consequence is that, although anything specifically presented as a proof or statement of a result is intended to meet the pure mathematician's criteria for accuracy, the rigour of the accompanying discussion will vary according to the subject discussed. (Compare Chapter 3, Chapter 8 and Chapter 14.) For this I make no apology. 'It is the mark of the educated mind to use for each subject the degree of exactness which it admits' (Aristotle).

I must however apologise for a major, though perhaps unavoidable, fault in this book. The historical remarks which I make in connection with certain problems are brief and, if only for that reason, paint only a small part of a very complicated picture. Moreover, a glance at the average history of mathematics shows that mathematicians are remarkably incompetent historians. I make no claim to superiority and can only advise that the reader consults the original sources before accepting the truth of any historical sketch drawn in this book.

xiii

xiv

Preface

Any textbook owes more to the books and lectures of others than to the nominal author. At one stage I had a list of over 25 names of unwitting contributors to this one. However, a long list prompts more interest in its omissions than its inclusions so I shall simply record my immense debt to the inspiring lectures of G. Friedlander, J.P. Kahane, H.P. Swinnerton-Dyer and H. Shapiro.

This book would never have seen the light of day without the labours of several generations of Cambridge typists. I should like to thank in particular Robyn Bringan, Debbie McCleland and Betty Sharples. It would have contained many more great and small mathematical errors without the careful scrutiny of Jonathan Partington, Richard Hildich, Chris Budd and an anonymous referee.

I close the preface by dedicating this book to my parents with love and respect.

T.W. Körner