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Introduction

Gregory A. Seregin, Varga K. Kalantarov and Sergey V. Zelik

The year 2022 is the 100th anniversary of Olga A. Ladyzhenskaya, a famous

Russian mathematician who played an outstanding role in developing the

modern theory of partial differential equations (PDEs) and their applications

including the qualitative theory of PDEs, infinite-dimensional dynamical

systems, mathematical problems of hydrodynamics and nonlinear problems

of mathematical physics.

The book we are presenting is the expanded version of Ladyzhenskaya’s

lecture notes for the course of lectures given by her at the Accademia Nazionale

dei Lincei in 1991 and the aim of this book is to give a brief introduction to

the mathematical foundations of the theory of infinite-dimensional dynamical

systems and their attractors, with applications to several classes of dissipative

nonlinear PDEs.

Ladyzhenskaya came to attractors from her favourite topic, the math-

ematical theory of viscous incompressible fluids, by trying to understand

the nature of turbulence by interpreting the Navier–Stokes system as an

infinite-dimensional dynamical system and using/extending the ideas and

methods of classical dynamics. Such an interpretation became possible due

to her fundamental result on the uniqueness of solutions for the 2D Navier–

Stokes problem, proven in 1958, see [62] (see also [63] for a more detailed

exposition). Precisely, it has been proved there that the initial boundary value

problem

⎧
⎪⎨
⎪⎩

∂tv +
2∑

k=1

vkvxk
+ ∇p = ν�v + f, div v = 0, t > 0, x ∈ �,

v = 0, x ∈ ∂�, v(x,0) = v0(x), x ∈ �,

(1)

vii
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viii Introduction

in a bounded domain � ⊂ R
2 possesses a unique global solution v(t) for

all external forces f and initial conditions v0 belonging to a properly chosen

function space.

When this global well-posedness is established one can define a solution

semigroup Vt of this problem in the proper phase space H and treat the Navier–

Stokes equations as an infinite-dimensional dynamical system Vt acting on this

phase space H (analogously with the classical qualitative theory of dynamical

systems generated by ODEs). In her seminal paper [65], Ladyzhenskaya

constructs a special set M in the phase space H (roughly speaking, the set

of square integrable solenoidal vector fields) with the following properties:

• M is invariant: Vt (M) = M, i.e. M consists of trajectories of the

dynamical system Vt ;

• all trajectories are attracted by M, i.e. any trajectory that started from a

bounded set B comes to an ε-neighbourhood of M after a finite time

T (ε,B) and remains there;

• M is compact in H and is therefore in a sense finite-dimensional.

This set is constructed as an ω-limit set of the absorbing ball of the semigroup
Vt and is exactly what is nowadays called a global attractor.

Ladyzhenskaya wrote in [69] about the reasons that prompted her to study

attractors: I tried to understand what the experimenter can observe after a very long

(infinite) period of time. At the same time, I started from the statement widespread

among physicists that the solutions of dissipative systems ‘forget’ their initial data

and are ‘formed’ under the influence of constantly (stationary) acting factors. In the

literal sense of the word, this, of course, is not true, because in a deterministic

system (I had in mind only such systems, and first of all the two-dimensional

Navier–Stokes equations, for which the global unique solvability of the

initial-boundary value problems has been proved) solutions are determined by their

initial data (as well as boundary conditions and external forces, which are

considered fixed and independent of time). But in the course of time, the solution

may move far away from them and, in this sense, forget them. And I asked myself

the question: what is the part of the phase space to which solutions are attracted

and what is the dynamics on this part?

These words are very similar to the modern description of so-called

deterministic chaos, an extremely interesting and important, and in a sense still

‘mysterious’ phenomenon which allows a deterministic system to demonstrate

random behaviour. Note that this phenomenon has been observed in hydrody-

namics and weather prediction by Lorentz [78] and is nowadays considered to

be one of the characteristic features of turbulence.

The prominent ideas of Ladyzhenskaya inspired many brilliant mathemati-

cians to switch to this area and led to the development of a general theory of
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Introduction ix

infinite-dimensional dynamical systems governed by dissipative PDEs (also

known as attractor theory), which is the main subject of the book we are

presenting.

The book consists of two parts. Part I, comprising Chapters 1–4, is focused

on the theory of global attractors for semigroups defined on a complete

metric space X. Part II containing Chapters 5–7 is about particular semigroups

generated by initial boundary value problems for 2D Navier–Stokes equations,

nonlinear parabolic equations, damped nonlinear wave equations, etc.

In Chapter 1, a number of basic notions are defined. Since some of

them differ from the modern terminology, we reproduce them and indicate

differences.

• A semigroup Vt : X → X is called a bounded semigroup if for each

bounded set B ⊂ X, the orbit set γ +(B) := ∪x∈B{Vtx, t ∈ R
+} is

bounded.

• A set A ⊂ X attracts a set M ∈ X if for each ε > 0 there exists

T = T (ε,M) such that Vt (M) ⊂ Oε(A) for all t ≥ T , where Oε(A) is an

ε-neighbourhood of the set A.

• A set A attracting each point of X is called a global attractor of the

semigroup Vt and a set that attracts each bounded set B ⊂ X is called the

global B-attractor of the semigroup Vt .

• A semigroup is called pointwise dissipative if it has a bounded global

attractor and it is called B-dissipative if it has a bounded global B-attractor.

• A ball BR is called an absorbing set of the semigroup Vt if for each

bounded set B ⊂ X there exists t0(B) such that Vt (B) ⊂ BR, ∀t ≥ t0(B).

In modern terminology, a semigroup or dynamical system is called dissipa-

tive if it possesses a bounded absorbing ball. Moreover, a global B-attractor

is nowadays simply known as a global attractor, and Ladyzhenskaya’s ‘global

attractor’ is known as a pointwise attractor. Thus, on the one hand, the attractor

M captures all of the non-trivial limit dynamics of the system in question

as time goes to infinity, while, on the other hand, it is essentially smaller

than the initial phase space. In particular, in many cases, this attractor

has a finite dimension, so there is a tremendous reduction of the effective

‘degrees of freedom’ (from infinite to finite), which in turn allows us to

use the ideas and methods of classical dynamics to investigate the dynamics

of PDEs.

The main objects of study in Chapter 2 are so-called semigroups of class

K, i.e. semigroups that for each t > 0 map any bounded set B ⊂ X to a
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x Introduction

precompact set Vt (B). Two important statements, Theorem 2.2 and Theorem

2.3, are proved in the chapter. Conceptually, they show the following:

• if a continuous semigroup Vt : X → X is of class K and B-dissipative or

bounded and point-wise dissipative, then it possesses a minimal global

B-attractor M which is compact, invariant and connected, provided X is

connected;

• if Vt : X → X is a continuous semigroup of class K, the orbit γ +(x) is

bounded for each x ∈ X and a ‘good’ Lyapunov function exists, then there

is a minimal global attractor M̂ that consists of the stationary points Z of

the semigroup. In other words, as time tends to infinity any bounded

trajectory of the semigroup converges to the set Z. Moreover, if Z is

bounded, then the semigroup has a minimal global B-attractor M. In

addition, if Z is totally disconnected (e.g. if it consists of finitely many

points), then the attractor M consists of equilibria Z and all heteroclinic

orbits connecting different equilibria from Z.

Of course, there are many publications (see e.g. [6, 42, 44, 45, 85, 91] and

references therein) where various theorems about attractors of semigroups of

class K and/or their applications have been proven. To our knowledge, the first

result on attractors of compact semigroups appeared in [11] and the results for

the case where the Lyapunov function exists can be found in [42].

It is noteworthy that the class of semigroups possessing a global Lyapunov

function is extremely important for the theory of attractors since it is the only

known relatively large class for which we can say something reasonable about

the structure of the attractor. The further development of this theory led to the

concept of a regular attractor: a global attractor that consists of a finite union

of finite-dimensional unstable manifolds of equilibria, see [8] and also [92]

for the modern state of the art. Such attractors have a lot of good properties

which usually fail for general attractors. For instance, they are robust with

respect to perturbations and the rate of attraction to them of bounded sets is

exponential. Moreover, under the ‘generic’ assumption that stable and unstable

manifolds of equilibria intersect transversally (the Morse–Smale property), the

dynamics on these attractors is also robust with respect to perturbations, see

[17, 18, 33]. We also mention that the assumption that the equilibria set Z

is totally disconnected can be partially removed using the Simon–Lojasiewicz

technique, which gives the stabilization to a single equilibrium even in the case

that Z is a continuous set, see e.g. [53].

The results of Chapter 2 are extended in the subsequent Chapter 3 to the

class of asymptotically compact semigroups (semigroups of class AK). These
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Introduction xi

semigroups possess the property that each bounded sequence Vtk (xk), with

{xk} ⊂ X and tk → ∞, is a precompact set of X. As shown in Chapter 3,

the main results proved for semigroups of class K remain valid for AK-

semigroups.

Asymptotically compact semigroups arise naturally in the study of non-

parabolic equations (e.g. damped wave equations) that do not have the

simultaneous smoothing property. Theorem 3.3 gives the main technical tool to

study such equations. It claims that a semigroup Vt is asymptotically compact

if it can be presented as a sum

Vt = Ut + Wt, (2)

where the operators Ut are compact for every fixed t and Wt tend to zero

uniformly with respect to bounded sets as time tends to infinity.

We mention that the theory of AK semigroups has undergone intense

development during the last two decades and nowadays we have a number

of effective methods for verifying their asymptotic compactness which do

not require the splitting of the semigroup: for instance, the so-called energy

method (see [10, 84]) or the methods based on compensated compactness or

precompact semi-norms (see [24]).

Chapter 4 is devoted to upper bounds for the Hausdorff and fractal

dimension of the attractors. The main result here is the proof of the classical

volume contraction theorem, which states that a C1-map V on a Hilbert

space H contracts N -dimension volume in some neighbourhood of a compact

invariant set A, then the Hausdorff dimension of A does not exceed N , see

Theorem 4.5. Combined with the Liouville formula for the evolution of k-

dimensional volumes (see formula (4.28)) this yields one of the most popular

modern methods for estimating the dimension of the attractors; it is especially

effective for hydrodynamical problems. The analogous result for the fractal

(box-counting) dimension is also given (see Theorem 4.6), but the estimate is

essentially weaker and is not so elegant.

Note that while this key theorem for the Hausdorff dimension was obtained

for the finite-dimensional case in [52] and for the infinite-dimensional case

in [27], the same result for the fractal dimension was open for a long time

and has only recently been established. A breakthrough on this problem came

in the paper [49] where the result was obtained in the finite-dimensional

case. Then it was extended to the infinite-dimensional diffeomorphisms in

[13] and the final result in exactly the same formulation as for the Hausdorff

dimension was obtained in [22]. Thus, nowadays there is no difference

in estimating Hausdorff and fractal dimension via the volume contraction

method.
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xii Introduction

The second part of the book is devoted to applications of the general theory

developed in Part I to the classical equations of mathematical physics, namely,

the 2D Navier–Stokes equations (Chapter 6) and damped wave equations

(Chapter 7).

Chapter 6 contains two main results (Theorems 6.1 and 6.2) which give

the upper bounds for the number of determining modes N and the fractal

dimension dimf (M) of the attractor of the 2D Navier–Stokes equation (1)

in terms of the parameter ν. The estimates obtained for N are:

N ≤ c1ν
−4 + c′

1 and N ≤ c2ν
−2| ln

1

ν
| + c′

2

for the cases of no-slip (Dirichlet) and periodic boundary conditions, respec-

tively. Upper bounds for the fractal dimension are obtained for the case of

no-slip boundary conditions only and have the same form as for the corre-

sponding determining modes:

dimH (M) ≤ c3ν
−4 + c′

3,

where ci and c′
i above are some constants that are independent of ν.

Here we would like to make some important remarks. There is a heuristic

conjecture (partially inspired by the conventional theory of turbulence of

A.N. Kolmogorov from the one side and I. Prigogine’s theory of dissipative

structures from the other) that despite the infinite-dimensionality of the initial

phase space, the limit dynamics of a dissipative system are finite-dimensional

and can be effectively described by the evolution of finitely many parameters

(the so-called order parameters in the terminology of I. Prigogine). One of the

ultimate goals of the theory of attractors is to find a rigorous interpretation

and justification of this conjecture. Historically, the first attempt at tackling

this problem was made in the pioneering works of Foias and Prodi [34] and of

Ladyzhenskaya [65] using precisely the method of determining modes.

To be more precise, it was proved that the limit dynamics of 2D Navier–

Stokes equations are determined in a unique way if the evolution in time of the

first N Fourier modes is known and if N is large enough. So in some sense

these limit dynamics are determined by N parameters.

The further development of this theory went in the direction of generalizing

the form of the determining modes and computing upper bounds that are as

sharp as possible for the number N . In particular, analogous results have

been obtained in [36] where Fourier modes are replaced by nodes (i.e. the

values of the dependent variable at the nodes of some spatial grid). Later

on, the notions of determining volume elements and so on were introduced

and various upper bounds for the number N of determining elements in such

systems were obtained for various dissipative PDEs (see e.g. [36, 38, 39]

and references therein). The more general notion of determining functionals
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Introduction xiii

(or determining interpolant operators) as well as a unified approach for inves-

tigating parameters uniquely determining asymptotic behaviour of solutions to

dissipative PDEs was introduced in [26] and developed in [23] (see e.g. [24]

and references therein).

The key drawback of the described approach to the problem of finite-

dimensionality is that the values of the ‘slaved’ higher modes at some fixed

time t cannot be found in terms of the values of determining functionals at the

same moment in time (one needs to know the values of determining functionals

for all times in order to do this). In other words, the time evolution of the

values of determining functionals are not governed by a system of ODEs and

still can be infinite-dimensional. A closely related example here is a system of

ODEs with delay where the ‘number of parameters’ is finite, but the dynamics

can still be infinite-dimensional. This drawback inspired researchers to seek a

stronger version of finite-dimensional reduction based on various dimensions

of the attractor M.

To the best of our knowledge, the first result on the finiteness of the

Hausdorff dimension of a negatively invariant set in a Hilbert space was

obtained by J. Mallet-Paret in [79] with applications to delay differential

equations as well as to the 1D reaction diffusion equation. Based on this result,

the first very rough estimate for the Hausdorff dimension of a global attractor

of the 2D Navier–Stokes equations was obtained in [35].

Later on, in [67], Ladyzhenskaya proved the following result, which can

also be treated as a generalization of the method of [79].

Theorem A1 Let M be a bounded subset of a Hilbert space H , and let

V : M → H be an operator such that M ⊂ V (M) and satisfying the

conditions

‖V (v) − V (w)‖ ≤ ℓ‖v − w‖, ∀v,w ∈ H,

and

‖QN (V (v) − V (w))‖ ≤ δ‖v − w‖, ∀v,w ∈ H,

where ℓ > 0, δ ∈ (0,1) are given numbers and QN is the orthogonal

projection onto the subspace of co-dimension N . Then

dimH (M) ≤ N ln

(
8κ2ℓ2

1 − δ2

) [
ln

2

1 + δ2

]−1

,

where κ > 0 is an absolute constant.
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xiv Introduction

Using this theorem, she got an estimate of the Hausdorff dimension of the

global attractor for the 2D Navier–Stokes equations that grows exponentially

in ν−1 in the case of no-slip boundary conditions (see also [51]).

The polynomial in ν−1 estimate (6.14) presented in this monograph is due

to Babin and Vishik [7] (for the case of Hausdorff dimension) and Constantin

and Foias [27] (for fractal dimension). However, this estimate is still far from

being optimal and further progress in this direction is due to the use of so-

called Lieb–Thirring inequalities, see [75]. Up to the moment, the best known

upper bounds for the fractal dimension of the 2D Navier–Stokes equations can

be found in [91]:

dimf (M) ≤ CG, G := ‖f ‖L2 |�|ν−2,

where the modern value of the constant C is related to the constant CLT in the

corresponding Lieb–Thirring inequality via C = C
1/2
LT

2
√

2π
. The explicit value of

this constant is not available, but the best known analytic bound is CLT ≤ 1

2
√

3
,

see [22, 40].

For the case of periodic boundary conditions, the obtained upper bounds

can be essentially improved to:

dimf (M) ≤ cG2/3(1 + log G)1/3,

see [91]. Moreover, this estimate is in a sense sharp up to the logarithmic term:

the lower bounds of the form

dimf (M) ≥ c′G2/3

are attained on the properly constructed Kolmogorov flows, see [77]. Note also

that no non-trivial lower bounds are known for the case of no-slip boundary

conditions.

It is also noteworthy that Theorem A1 has an essential advantage in

comparison with other methods, namely, that the differentiability of the

corresponding semigroup is not required. For this reason, it can be applied

to many classes of degenerate or singular problems as well as problems

with supercritical nonlinearities where this differentiability is problematic

or is difficult to prove, see [24, 25, 82] and references therein for further

generalizations and applications. In particular, this theorem is very useful for

estimating the dimensions of attractors for various problems related to non-

Newtonian fluids in dimensions two or three, see e.g. [66, 71–73] and [80].

We also mention that the proper generalizations of the Ladyzhenskaya

squeezing property used in Theorem A1 have been exploited later in order

to demonstrate the existence of the so-called exponential attractor for various
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Introduction xv

dissipative nonlinear PDEs, see [82] and references therein. The notion of an

exponential attractor, which is somehow an intermediate object between the

global attractor and an inertial manifold, was introduced in [30] in order to

overcome major drawbacks of global attractors (sensitivity to perturbations

and slow rate of attraction). Remarkably, the initial assumptions of [30] for the

existence of such an object are very close to the assumptions of Theorem A1.

As we have already mentioned, Chapter 7 of the book is devoted to

attractors for abstract semilinear damped wave equations. After the short

introduction, the exposition begins (in Section 7.2) with the detailed analysis

of the linear problem

∂2
t v + ν∂tv + Av = h, v(0) = v0, vt (0) = v1, (3)

in an abstract Hilbert space H . Here A : D(A) → H is a given positive self-

adjoint linear operator with compact inverse and h = h(t) is a given external

force which may depend explicitly on time. The main result of the section is

the existence and uniqueness theorem for the solutions of problem (3) in the

appropriate energy spaces, which nowadays has become a standard technical

tool for the study of more general nonlinear wave equations.

We would like to emphasize here that Ladyzhenskaya was one of the

first mathematicians who applied functional analytic methods to study the

solvability of initial boundary value problems for hyperbolic equations, which

nowadays is classical (including the results presented in Section 7.2). Her first

book [61] deals exactly with equation (3) in the particular case that A is a

second order symmetric uniformly elliptic differential operator in a bounded

domain � ⊂ R
n.

Section 7.3 is devoted to the study of the analogous problems for the

nonlinear wave equation of the form

∂2
t v + ν∂tv + Av + f (v) = 0, v(0) = v0, vt (0) = v1, (4)

where the nonlinear function f is a smooth enough gradient (i.e. f (v) = F ′(v)

for some given non-negative potential F) and is in a sense subordinate to the

leading linear part Av.

In the subsequent Section 7.4 Ladyzhenskaya studied the differentiability of

solutions of problem (4) with respect to initial data for which the application

of the volume contraction method and estimation of the fractal dimension of

the corresponding attractor is necessary.

This attractor (a global B-attractor in the terminology of the book) is

constructed in Section 7.5 by verifying the associated solution semigroup Vt

in the standard energy space belongs to the class AK. This fact, in turn, is

obtained with the help of a decomposition as in (2) where Ut is the solution
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xvi Introduction

operator that corresponds to the linear problem (4) with f ≡ 0. Finally, the

result about the finite-dimensionality of the corresponding attractor is proved

in the concluding Section 7.6.

We recall that the key model for the abstract damped wave equation (4) is

the following dissipative PDE:

{
∂2
t v + ν∂tv − �v + f (v) = h, v

∣∣
∂�

= 0,

v(x,0) = v0(x), ∂tv(x,0) = v1(x),
(5)

where �⊂R
n is a bounded domain with smooth boundary ∂�, and f ∈ C1(R)

satisfies the dissipativity conditions

f (s)s − F(s) ≥ −C, F(s) :=
∫ s

0

f (τ)dτ ≥ −C, C > 0,

as well as the growth restriction

|f ′(s)| ≤ M(1 + |s|p−1),

where p ≥ 1 is a given growth exponent and M > 0.

In particular, the results presented in the book hold for this equation when

p < pen−crit :=
2

n − 2
(p may be arbitrarily large if n = 1 or n = 2).

This is the so-called sub-critical energy case where the nonlinearity f is

strongly subordinated to the Laplacian in the standard energy space. Actually,

the results of Chapter 7 concerning global well-posedness hold for the energy

critical case p = pen−crit , but the method of verifying the asymptotic

compactness requires p < pen−crit . We emphasize that this damped wave

equation is not the only equation to which the results of Chapter 7 can be

applied. Among other interesting examples are various versions of nonlinear

plate equations, von Karman equations, etc., see [24, 25] for more details.

It is noteworthy that the class of wave equations of the form (5) is one of

the most important classes of PDEs and has been studied intensively by many

prominent mathematicians. The first results on global existence, uniqueness,

and regularity of weak solutions to the Cauchy problem for some cases of

equation (5) with p ∈ [1,4) (in 3D case) are demonstrated in [55] and for the

initial boundary value problem with p ∈ [1,3] in [76] and [88]. Later on, the

above results were proved for the Cauchy problem with quintic nonlinearity

([58], [50]) and for the initial boundary value problem with p ∈ [3,5] in [15].

The supercritical case p > 5 is much more delicate and the uniqueness of

energy solutions in this case is still an open problem. The recent result of Tao
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[90] shows that finite time blow-up of smooth solutions may appear in systems

of equations of type (5) in the supercritical case.

With regards to the attractors for equation (5), a number of papers appeared

on this topic in the beginning of the 1980s, although some preliminary results

in this direction had been obtained a little earlier by Ball [9] and Webb [93].

The existence of a global attractor for equation (5) in the standard energy

phase space in the energy subcritical case p < pen−crit was obtained by

Haraux [46] and Hale [43], see also [70], and estimates for the dimension of

this attractor were obtained by Ghidaglia and Temam in [41] and Ladyzhen-

skaya [68].

The energy critical case p = pen−crit has been treated by Babin and

Vishik in [8] (see also Arieta, Carvalho and Hale in [2]); the existence of a

global attractor for the critical case was also obtained by Ladyzhenskaya [70],

but in higher energy space only. The key idea of their method is to use the

so-called dissipation integral together with a slightly delicate decomposition

as in (2) in which both operators Ut and Wt are nonlinear. This decomposition

also allowed them to establish the extra smoothness of the constructed global

attractor. Note that the usage of the dissipation integral was actually a

serious restriction which did not allow them to extend the method to non-

autonomous external forces or unbounded domains. This restriction was later

removed in [94].

The existence of a global attractor for problem (5) on a compact

n-dimensional Riemann manifold without boundary (e.g. on a torus that

corresponds to periodic boundary conditions) was established in [59] (see also

[32] for the analogous result for � = R
3) under the assumption

p ∈ (1,pcrit), pcrit :=
4

n − 2
.

The key new idea that allows them to shift the limit exponent is related to

the so-called Strichartz estimates, which give control of the L4(0,T ;L12(�))-

norm of the solution and this in turn leads to the uniqueness of the properly

defined weak solution. Remarkably, as is pointed out in [59], the idea of

using Strichartz estimates in the theory of attractors actually came from

Ladyzhenskaya.

In contrast to this, the analogous result in a bounded domain remained

open for a long time, because of the absence of Strichartz estimates for

manifolds with non-empty boundary. The breakthrough in the theory of such

estimates was made in the mid-2000s, see [12, 15] and references therein.

By combining these results with the classical Pohozhaev–Morawetz identity,

the global well-posedness of (5) with the critical growth exponent p = 5
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