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Introduction to Superconductivity

1.1 Basic Properties of Superconductivity

Superconductivity, as an emergent macroscopic quantum phenomenon, is one of

the most important subjects of contemporary condensed matter physics. It was first

discovered by Dutch physicist Heike Kamerlingh Onnes on April 8, 1911 [8–10]. In

1908, Onnes and his assistants successfully liquefied helium and for the first time

reached low temperatures below 4.25K. This was a historic breakthrough for low

temperature physics. When they applied this technique and measured the resistance

of mercury, they found that its resistance dropped abruptly from 0.1� to below

10−6 � within a narrow temperature range of 0.01K around 4.2K. This important

discovery opened up the field of superconductivity and related applications. It also

greatly stimulated the study of quantum emergent phenomena in condensed matter

physics.

Understanding the phenomena and exploring the mechanism of superconductiv-

ity are historically important in the development of condensed matter physics. In

the early days, condensed matter physics was not considered as fundamental as

quantum field theory by the mainstream of physics. Various classical and quan-

tum mechanical theories were developed to study solid state phenomena, such as

the Drude theory of transport, the Sommerfeld theory of electrons, the Debye the-

ory of phonons, and the Bloch theory of energy band structures. However, there

were few original fundamental principles arising from this field. This situation was

changed when the mechanism of superconductivity as well as that of superfluidity

was revealed.

A superconductor has two characteristic electromagnetic features, namely zero

direct current resistance and perfect diamagnetism. Zero resistance means that

superconductors are ideal conductors, and there is no energy loss during electric

energy transport using superconducting transmission lines. Moreover, supercon-

ductors are more than just ideal conductors. More fundamentally, superconductors
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2 Introduction to Superconductivity

exhibit perfect diamagnetism which expels magnetic flux lines from the interior

of superconductor. The external magnetic field can only penetrate into supercon-

ductors within a short length scale near the surface called the penetration length.

The perfect diamagnetism of superconductivity was discovered byW.Meissner and

R. Ochsenfeld in 1933. It is also called theMeissner effect [11]. TheMeissner effect

is not a consequence of zero resistance but an independent fundamental property

resulting from the phase coherence of superconductivity.

TheMeissner effect distinguishes a superconductor from an ideal normal conduc-

tor in their responses to an applied magnetic field. If a magnetic field is applied to

a normal metal, Faraday’s law, or Lentz’s law, says that a screening eddy current is

induced to expel the magnetic flux. However, due to the existence of resistance,

the induced eddy current dissipates and eventually decays to zero, allowing the

magnetic field to penetrate into the interior of the conductor. On the other hand,

if the magnetic field is applied to an ideal conductor or a superconductor at low

temperatures, as there is no resistance in either case, a persistent eddy current exists

which expels the magnetic field from within the bulk. Now if the temperature is

raised so that both systems return back to their normal metallic states, the magnetic

field penetrates to the bulks again. So far we have not seen any difference between

a superconductor and an ideal conductor.

A sharp contrast between an ideal conductor and a superconductor appears when

both systems are cooled down. In an ideal conductor, the magnetic field remains

inside the system, while in a superconductor, the magnetic field is expelled to the

outside. Thus, for an ideal conductor, it matters if it is field cooled or zero field

cooled, whereas for a superconductor, regardless of the external field and its history,

the magnetic field becomes zero inside the bulk.

The zero resistance and the Meissner effect are two defining properties of super-

conductors that cannot be understood in the framework of the single-electron theory,

or, the band theory. In the macroscopic world, dissipation and friction are nearly

unavoidable. How can electric currents be free of dissipation? Diamagnetism is

found in nearly all materials, but it is generally very weak and can only be observed

in materials that do not exhibit other forms of magnetism. The perfect diamagnetism

exhibited in superconductors is even more puzzling than the appearance of zero

resistance. Quite a number of noble metals, such as gold, silver, and cooper, are

in fact not superconducting at all at ambient pressure. Thus superconductivity is

not a consequence of weak dissipation. Instead, it is a macroscopic phenomenon,

resulting from the collective interplay of electrons.

The superconducting state is a distinct thermodynamic phase. It occurs when the

temperature is reduced below a critical temperature, denoted as Tc, through a second

order phase transition in the absence of an external magnetic field. The supercon-

ducting transition temperatures are generally below 25 K. High temperature super-
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1.2 Two-Fluid Model and London Equations 3

conductors are ideally defined as materials that superconduct at temperatures above

the boiling point of liquid nitrogen, i.e. 77 K. However, in the literature, materials

with Tc close to or larger than 40 K are all referred to as high-Tc superconductors.

The high-Tc superconductors that have been discovered include: (1) hole or elec-

tron doped perovskite copper oxides, first discovered by Bednorz and Müller in

1986 [1]; (2) electron or hole doped iron pnictides [5] or chalcogenides [12], first

discovered by Hosono and coworkers in 2008; (3) superhydride compounds under

ultrahigh pressure, anticipated by Ashcroft for metallic hydrogen [13] and hydrogen

enrichedmaterials [14], and first confirmed experimentally in H3S by Drozdov et al.

in 2015 [15]; (4) Magnesium diboride with Tc ∼ 39 K, discovered by Nagamatsu

et al. in 2001 [16]. The current highest Tc record holder is HgBa2Ca2Cu3O8+δ

(133 K) at ambient pressure [17], and carbonaceous sulfur hydride (288 K) under

267 GPa [18].

The phase transition from a normal metallic or insulating state to a supercon-

ducting state corresponds to the formation of superconducting long-range order.

Different from ferromagnetism, the superconducting order is an off-diagonal long-

range order which does not have a classical correspondence [19]. By lowering tem-

peratures, there exists a critical temperature range within which the resistance drops

to zero. The width of this critical region is determined by the fluctuation of super-

conducting order parameter. In conventional metal-based superconductors, this crit-

ical temperature range is very narrow, and the resistance drops to zero abruptly.

However, in high-Tc copper oxides or iron-based superconductors, or in dirty super-

conductors of metals and alloys, fluctuations are strong. The corresponding critical

regions are broad and the resistance drops are relatively slow.

A superconductor has exactly zero direct-current resistance and is able to main-

tain an electric current without generating an external voltage in the superconduct-

ing state. It loses the superconducting phase coherence and exhibits a small but finite

resistance in the presence of an alternative current. One can also turn a superconduc-

tor into a normal conductor by applying a strong magnetic field or a direct electric

current. For a given temperature, the highest applied magnetic field or electric cur-

rent under which a material remains superconducting are called the upper critical

field or the critical current.

1.2 Two-Fluid Model and London Equations

Historically, an important phenomenological theory of superconductivity is the two-

fluid model first proposed by Groter and Casimir [20]. The key assumption of this

model is the existence of two different types of electrons in superconductors, namely

normal and superconducting electrons. The density of normal electrons is called the

normal fluid density and that of superconducting electrons is called the superfluid
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4 Introduction to Superconductivity

density. The sum of these two kinds of densities gives the total density of electrons.

Normal electrons carry entropy and behave similarly as in ordinary metals. Their

states are changed by scattering with phonons and impurities. In contrast, super-

conducting electrons are resistance free. They do not carry entropy and have no

contribution to thermodynamic quantities such as the specific heat. A static electric

field cannot exist in an equilibrium superconducting state. Otherwise, supercon-

ducting electrons would be accelerated without attenuation, leading to a divergent

electric current. The existence of superconducting electrons with zero electric field

explains why the resistance is zero. However, the two-fluid model does not answer

the question of how superconducting electrons are formed, neither can it explain the

Meissner effect.

In order to explain the Meissner effect, Fritz and Hentz London brothers pro-

posed an electromagnetic equation [21] to describe the superconducting current.

This equation connects the superconducting current density Js with the electromag-

netic vector potential A. Under the Coulomb gauge (also known as the transverse

gauge) where ∇ · A = 0, it can be expressed as

Js = −
nse

2

m
A, (1.1)

where ns is the superfluid density of electrons. This equation is called the London

equation. It cannot be deduced from theMaxwell equations and should be viewed as

an independent electromagnetic equation by treating superconductors as a special

class of electromagnetic media.

The London equation could be rigorously derived only after the microscopic the-

ory of superconductivity has been established. For better understanding its physical

meaning, a heuristic argument is commonly given to formally “derive” this equation

within theory of classical electromagnetism. A basic assumption is that electrons are

moving in a frictionless state, so that

mv̇s = −eE, (1.2)

where vs is the velocity of superconducting electrons and E is the electric field. The

supercurrent Js = −ensvs is then governed by the equation

∂Js

∂t
=

e2ns

m
E, (1.3)

which is referred to as the first London equation. Then, using theMaxwell equation,

∇ × E = −
∂B

∂t
, (1.4)

we immediately arrive at

∂

∂t

(

∇ × Js +
e2ns

m
B

)

= 0. (1.5)
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1.2 Two-Fluid Model and London Equations 5

This describes the behavior of an ideal conductor. To describe the Meissner effect,

the constant of integration must be chosen to zero so that

∇ × Js +
e2ns

m
B = 0. (1.6)

This is the second London equation.

The two London equations can be combined into a single one, i.e. Eq. (1.1), in

terms of the vector potential in the Coulomb gauge. One can also write the London

equation in an arbitrarily chosen gauge. In that case, the London equation becomes

Js =
e2ns

m
(−A + ∇ϕ), (1.7)

which differs from Eq. (1.1) by a gradient of a scalar field ϕ. Later on, we will see

that this scalar field is just the condensation phase field and the corresponding term

reflects the nonlocal effect of electromagnetic responses. ∇ϕ is to shift the vector

potential from an arbitrary gauge to the Coulomb gauge.

If the second London equation is manipulated by applying Ampere’s law,

∇ × B = μ0Js, (1.8)

it turns into the Helmholtz equation for the magnetic field:

∇2B =
μ0nse

2

m
B. (1.9)

In a semi-infinite plate of superconductor with its surface perpendicular to the

x-direction, the solution of Eq. (1.9) is simply given by

B(x) = B(x0)e
−(x−x0)/λ, (1.10)

where

λ =

√

m

μ0nse2
(1.11)

is the London penetration depth describing the decay length of an external magnetic

field and x0 is the x-coordinate of the superconductor-vacuum interface. In the limit

x − x0 ≫ λ, the magnetic field decays to zero. This gives a phenomenological

explanation to the Meissner effect.

In spite of its simplicity, the two-fluid model captures the key features of

superconductors. The key concepts – the normal and superconducting electrons

– were broadly used in the construction of the microscopic theory of superconduc-

tivity. The normal and superconducting electrons correspond to the quasiparticle

excitations and the superconducting paired electrons, respectively. The two-fluid

model has played an important role in the study of superconductivity, although

it does not explain the microscopic mechanism of superconductivity. Even after
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6 Introduction to Superconductivity

the establishment of the microscopic theory of superconductivity, it is still useful

to apply the two-fluid model to understand qualitatively experimental results of

superconductors.

1.3 Cooper Pairing

Superconductivity is a quantum many-body effect and cannot be understood based

on the single-electron theory and its perturbative expansion. In 1956, Cooper con-

sidered a two-electron problem which turned out to be one of the most crucial steps

toward a microscopic understanding of superconductivity [22]. He showed that if

there exists an effective attraction interaction, nomatter howweak it is, between two

electrons in a background of the Fermi sea, the Fermi surface is no longer stable.

Electrons on the Fermi surface will pair each other to form bound states, so that

the ground state energy is reduced. The bound state of paired electrons is called a

Cooper pair.

The Cooper instability results from the interplay between the weak attractive

interaction and the Fermi sea. The appearance of the Fermi sea is crucial. Otherwise,

the Cooper pairing instability would not happen in an arbitrarily weak attractive

potential. In free space, two electrons can form a bound state only if the attractive

interaction between them is sufficiently strong (above a finite threshold) in three

dimensions.

The proof given by Cooper is based on a simple variational calculation. He con-

sidered how the ground state energy is changed by adding two extra electrons with

opposite momenta and spins to a filled Fermi sea at zero temperature. Due to the

Pauli exclusion principle, these two electrons can only be put outside the Fermi

sea. For simplicity in the calculation, he assumed that the attractive potential is

nonzero only when both electrons lie between the Fermi energy EF and EF + ωD,

and the amplitude of the potential V0 is momentum independent. Here the cutoff

ωD is a characteristic energy scale determined by the mechanism or resource from

which the attraction is induced. If the effective attraction is induced by the electron–

phonon interaction, ωD is just the characteristic frequency of phonons, namely the

Debye frequency. After a simple variational calculation, Cooper found that the two

electrons form a bound state with the binding energy

�E = 2� = −2h̄ωDe−2/NF g, (1.12)

whereNF is the electron density of states on the Fermi surface, and g is the coupling

strength. This is also the energy needed to break a Cooper pair. This result shows that

the Fermi surface is unstable against a small attractive interaction. It also reveals two

important parameters in describing a superconducting state. One is the characteristic

attraction energy scale ωD, and the other is the dimensionless coupling constant
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1.3 Cooper Pairing 7

defined by the product of the density of states at the Fermi level and the depth of

the attractive interaction. As discussed later, these two parameters also determine

the superconducting transition temperature Tc. The calculation made by Cooper is

simple, but it captured the main character of superconductivity.

Equation (1.12) shows that the dependence of the binding energy on the inter-

action strength g is singular. It implies that the microscopic theory of supercon-

ductivity cannot be established through perturbative calculations based on normal

conducting states. This is actually the major difficulty in the study of the supercon-

ducting mechanism, which obstructed the development of a microscopic theory of

superconductivity for nearly fifty years after its discovery.

To see more clearly how the Cooper pairing energy comes about, let us follow

Cooper to solve a simple model of two electrons added to a rigid Fermi sea at

zero temperature. It is assumed that the two electrons interact with each other but

not with those in the Fermi sea. To reduce the repulsive interaction applied by

the exclusion principle, the two electrons should form a spin singlet so that their

spin wave function is antisymmetric and their spatial wave function is symmetric.

Moreover, the lowest energy state should have zero total momentum so that the

electrons must have opposite momenta. Therefore, the wave function has the form

|	〉 =
∑

k

α(k)c
†
k↑c

†
−k↓|0〉, (1.13)

where |0〉 is the vacuum composed of the rigid Fermi sea.

This interacting system of two electrons is governed by the Hamiltonian

H =
∑

k

(εk − μ)c
†
kσ ckσ −

∑

k,k′

Vkk′c
†
k↑c

†
−k,↓c−k′,↓ck′,↑, (1.14)

where εk is the energy dispersion of electrons and μ is the chemical potential. Vk,k′

is the scattering potential between two Cooper pairs with momenta (k ↑ ,−k ↓) and

(k′ ↑ , − k′ ↓). For simplicity, the attractive interaction between the two electrons

is assumed to be momentum independent and to take a simple form

Vk,k′ =
g

V
, (1.15)

with V the system volume. From the Schrödinger equation

H |	〉 = E|	〉, (1.16)

we find the equation that α(k) satisfies

2ξkα(k) −
g

V

∑

k′

α(k′) = (E − E0)α(k), (1.17)
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8 Introduction to Superconductivity

where E0 is the energy of the filled Fermi sea and

ξk = εk − μ. (1.18)

Equation (1.17) can be rewritten as

α(k) =
g

2ξk − �E

1

V

∑

k′

α(k′), (1.19)

where �E = E − E0 is the energy gap of the system with respect to the vacuum.

Summing over all momentum points allows α(k) to be cancelled out from both

sides. This leads to the gap equation

1

g
=

1

V

∑

k

1

2ξk − �E
= NF

∫ h̄ωD

0

dξ
1

2ξ − �E
. (1.20)

By solving this equation, we find that

1

g
=

NF

2
ln

2h̄ωD − �E

−�E
≈

NF

2
ln

2h̄ωD

|�E|
. (1.21)

This yields the result shown in Eq. (1.12).

1.4 BCS Mean Field Theory

In 1957, John Bardeen, Leon Cooper, and John Robert Schrieffer (BCS) proposed

the microscopic theory of superconductivity based on the concept of Cooper pairing

[23]. Their work established a fundamental theory of superconductivity. It also

provided tremendous progress toward the understanding of microscopic quantum

world.

In the BCS framework, there are two preconditions for the formation of super-

conducting condensation. The first is the formation of Cooper pairs through an

attraction interaction. The second is the development of phase coherence among

Cooper pairs. Cooper pairing refers to the process that electrons near the Fermi

surface form bound states. It is a prerequisite of superconductivity because Cooper

pairs carry the feature of bosons that eliminates the effective repulsion induced by

the Fermi statistics of electrons, and can condense into a superfluid state by forming

phase coherence. Cooper pairs are found to exist in all superconductors discovered

so far. This gives strong support to the BCS theory.

The BCS work is a variational theory. It is based on the BCS variational wave-

function first proposed by Schrieffer. This wavefunction generalizes the solution of

Cooper pair to a many-body system. It captures the main picture of Cooper for the

superconducting condensation of paired electrons. The BCS theory is equivalent

to the mean-field theory later developed based on the Bogoliubov transformation.
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1.4 BCS Mean Field Theory 9

This mean-field theory is to take the Gaussian or saddle-point approximation in the

framework of quantum field theory. It handles the thermal average of operators,

rather than the variational wavefunction of the ground state. Fluctuations of Cooper

pairs around the saddle point can be included, for example, by taking the one-loop

expansion in the path-integral formulism.

The BCSmean field theory starts by considering the reduced pairing Hamiltonian

defined by Eq. (1.14). This Hamiltonian is a simplification to the complex interac-

tions of electrons. It highlights the interaction in the pairing channel and neglects

interactions in other channels.

Equation (1.14) is applicable to superconductors with spin singlet pairing. It

can be extended to describe spin triplet superconductors with slight modifications.

This Hamiltonian considers the Cooper pairs with zero center-of-mass momen-

tum, and neglects the pairing with finite center-of-mass momentum. The zero

momentum pairing is physically reasonable because the phase space for the finite

momentum pairing is strongly constrained by the Fermi surface geometry and by

the momentum conservation [6]. In an external magnetic field, the Fermi surfaces

of up- and down-spin electrons are split, and the pairing with finite center-of-mass

momentum is favored. Cooper pairs in a current-carrying superconducting state

have finite pairing momenta. But the pairing energy is suppressed and becomes

zero when the current exceeds a critical current.

To define

A =
∑

k

c−k↓ck↑, (1.22)

we can rewrite the BCS reduced Hamiltonian as

H =
∑

kσ

ξkc
†
kσ ckσ −

g

V
A†A. (1.23)

Taking the mean-field approximation for the interaction term,

− A†A = −〈A†〉A − 〈A〉A† + 〈A†〉〈A〉, (1.24)

we obtain the BCS mean-field Hamiltonian

HMF =
∑

k

(

∑

σ

ξkc
†
kσ ckσ + �c

†
k↑c

†
−k↓ + �∗c−k↓ck↑

)

+
V

g
|�|2. (1.25)

〈A〉 represents the expectation value of operator A. � is the superconducting order

parameter determined by the equation

� = −
g

V
〈A〉 = −

g

V

∑

k

〈c−k↓ck↑〉. (1.26)

〈c−k↓ck↑〉 depends on the value of �.

www.cambridge.org/9781009218597
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-21859-7 — D-wave Superconductivity
Tao Xiang , Congjun Wu 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Introduction to Superconductivity

Equation (1.26) is just the celebrated BCS gap equation. It determines completely

the low energy quasiparticle excitation spectra in the superconducting state. By

solving this equation self-consistently, one can determine all the thermodynamic

quantities.

HMF does not conserve the particle number, but the total spin,
∑

k σc
†
kσ ckσ ,

and the total momentum of the Cooper pairs remain conserved. HMF can be diag-

onalized by a unitary matrix using the Bogoliubov transformation introduced in

Appendix A
(

ck↑

c
†
−k↓

)

=

(

uk vk

−v∗
k u∗

k

) (

αk

β
†
k

)

. (1.27)

After the diagonalization, the Hamiltonian becomes

HMF =
∑

k

Ek

(

α
†
kαk + β

†
kβk

)

+
∑

k

(ξk − Ek) +
V

g
�2. (1.28)

α
†
k and β

†
k are the creation operators of the Bogoliubov quasiparticles. They describe

the single-particle excitations above the superconducting gap, corresponding to the

normal electrons in the two-fluid model. The quasiparticle excitation energy is

given by

Ek =

√

ξ 2
k + �2. (1.29)

On the Fermi surface, ξk = 0 andEk = |�|. Thus�k is the gap function of quasipar-

ticles in momentum space. The matrix elements uk and vk satisfy the normalization

condition, u2
k + v2

k = 1, and are determined by

uk =

√

1

2
+

ξk

2Ek

, (1.30)

vk = −sgn(�)

√

1

2
−

ξk

2Ek

. (1.31)

By calculating the pairing correlation function using the above solution, we can

express explicitly the gap equation as

1 =
g

V

∑

k

1

2Ek

tanh
βEk

2
. (1.32)

The temperature dependence of the energy gap can be determined by self-consistently

solving this equation. Moreover, the superconducting transition temperature Tc can

be solved from this equation by setting � = 0.

At zero temperature, there are no quasiparticle excitations, and both 〈α
†
kαk〉 and

〈β
†
kβk〉 are zero. The ground state wavefunction can be obtained by projecting out
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