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Preface

Ever since E. H. Lieb and W. Thirring published their celebrated work Inequal-

ities for the moments of the eigenvalues of the Schrödinger Hamiltonian and

their relation to Sobolev inequalities (Lieb and Thirring, 1976), the branch of

spectral theory related to such inequalities has flourished and these bounds are

now named for them.

In their 1976 paper Lieb and Thirring developed a family of inequalities, of

which they had used a special case in an earlier (1975) paper, to prove stability

of matter. Their approach simplified and improved the work by Lenard and

Dyson (1968), and introduced fundamental ideas in the analysis of fermionic

quantum many-body systems.

Lieb–Thirring inequalities come in two different versions, namely a spectral

form and a kinetic (or dual) form. The kinetic form is most directly applicable

to quantum many-body systems and provides a lower bound on the total kinetic

energy in terms of certain simple effective characteristic of the state. It is

a mathematical expression of the uncertainty and Pauli exclusion principles

and a far-reaching generalization of Sobolev inequalities. The spectral form of

the Lieb–Thirring inequalities concerns the negative eigenvalues −Ej of the

one-particle Schrödinger operator

H = −∆ − V

and provides upper bounds on the Riesz means
∑

j

E
γ

j
, γ > 0 ,

that only involve an L
p norm of V . In the special case γ = 1, these bounds are

equivalent to the kinetic form of the Lieb–Thirring inequalities.

It turned out that this form is also very useful in the study of the dimension

of attractors for the Navier–Stokes and other non-linear evolution equations.

xi
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xii Preface

Originally, it was calculated by exploiting the available Sobolev inequalities

and then employing the relationship between that dimension and the prevailing

Lyapunov exponents, as first conjectured by Farmer et al. (1983). This effective,

but somewhat cumbersome approach was significantly simplified by the use

of the Lieb–Thirring improvement of the Sobolev inequalities (Lieb, 1984;

Constantin et al., 1985; Temam, 1997).

Lieb–Thirring inequalities are also important in the study of properties of the

essential spectrum of Schrödinger operators. Deift and Killip (1999) were able

to obtain a sharp result on the absolute continuity of the positive spectrum for

one-dimensional Schrödinger operators using a trace formula by Zaharov and

Faddeev (1971); see also Killip and Simon (2009). Such trace formulas provide

identities between characteristics of the spectrum (eigenvalues and scattering

data) and some functionals involving electric potentials of Schrödinger op-

erators. In addition, they describe integrals of motions of the Korteweg–De

Vries (KdV) equation. It is worth noting that one such trace formula was used

by Gardner et al. (1974) to prove a special case of what came to be called

the Lieb–Thirring inequalities. Later a version of this trace formula for matrix-

valued potentials played an important role in obtaining sharp constants in Lieb–

Thirring inequalities for multi-dimensional Schrödinger operators (Laptev and

Weidl, 2000b). It is remarkable that some sharp constants in Lieb–Thirring

inequalities are related to soliton-type potentials appearing in the theory of the

KdV equation.

Spectral inequalities in the special case γ = 0, which correspond to bounds

on the number of negative eigenvalues of Schrödinger operators, have an even

longer history. After initial results by Bargmann, Birman, Schwinger, Calogero

and others, a systematic investigation was started in the Russian school of

M. Birman and M. Solomyak and in the US by B. Simon and E. Lieb. The

respective estimates are known as Cwikel–Lieb–Rozenblum (CLR) inequalities

(Cwikel, 1977; Lieb, 1976, 1980; Rozenbljum, 1972a, 1976). One of the main

motivations for proving such inequalities was to obtain necessary and sufficient

conditions on the potentials for admitting Weyl asymptotics. By now, there

are at least seven proofs of the CLR bound using rather different tools from

mathematical analysis.

It has been more than four decades since the paper of Lieb and Thirring

was published, and the theory of Lieb–Thirring inequalities is still a very

dynamically developing area of functional analysis and mathematical physics.

The main conjecture on the sharp Lieb–Thirring constant for γ = 1 in dimension

three remains open. This area has become a well-established part of analysis that

generates beautiful new ideas and that finds applications beyond the spectral

theory of Schrödinger operators.
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Preface xiii

This book is aimed at presenting the current state of the art of some

parts of spectral theory of partial differential equations. Our intention was

to write a book that covers some new results connected to spectral properties of

Schrödinger and Laplace operators that have been obtained during the last few

decades. Most of them are focused around our own interests related to Lieb–

Thirring inequalities. While writing the text and when giving courses based on

preliminary versions of the book, we faced the problem that we needed a lot

of material from the general spectral theory of self-adjoint operators in Hilbert

spaces and a number of standard functional inequalities. Including all this has

substantially increased the size of the book and forced us to postpone some core

material for the future. We now hope that the book might be useful not only to

our colleagues who are interested in spectral inequalities, but also to students

specializing in analysis.
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