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50 Least-Squares Problems

We studied in Chapters 29 and 30 the mean-square error (MSE) criterion in

some detail, and applied it to the problem of inferring an unknown (or hidden)

variable x from the observation of another variable y when {x,y} are related

by means of a linear regression model or a state-space model. In the latter case,

we derived several algorithms for the solution of the inference problem, such as

the Kalman filter, its measurement and time-update forms, and its approximate

nonlinear forms. We revisit the linear least-mean-square error (LLMSE) formu-

lation in this chapter and use it to motivate an alternative least-squares method

that is purely data-driven. This second method will not require knowledge of

statistical moments of the variables involved because it will operate directly on

data measurements to learn the hidden variable. This data-driven approach to

inference will be prevalent in all chapters in this volume, where we describe many

other learning algorithms for the solution of general inference problems that rely

on other choices for the loss function, other than the quadratic loss.

We start our analysis of data-driven methods by focusing on the least-squares

problem because it is mathematically tractable and sheds useful insights on many

challenges that will hold more generally. We will explain how some of these chal-

lenges are addressed in least-squares formulations (e.g., by using regularization)

and subsequently apply similar ideas to other inference problems, especially in

the classification context when x assumes discrete values.

50.1 MOTIVATION

The MSE problem of estimating a scalar random variable x ∈ IR from observa-

tions of a vector random variable y ∈ IRM seeks a mapping c(y) that solves

x̂ = argmin
c(y)

E (x− c(y))2 (50.1)

We showed in (27.18) that the optimal estimate is given by the conditional

mean x̂ = E (x|y = y). For example, for continuous random variables, the MSE

estimate involves an integral computation of the form:
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2166 Least-Squares Problems

x̂ =

ˆ

x∈X

xfx|y(x|y)dx (50.2)

over the domain of the realizations, x ∈ X. Evaluation of this solution requires

knowledge of the conditional distribution, fx|y(x|y). Even if fx|y(x|y) were avail-

able, computation of the integral expression is generally not possible in closed

form. In Chapter 29, we limited c(y) to the class of affine functions of y and

considered instead the problem:

(wo, θo) = argmin
w,θ

E (x− x̂)2

subject to x̂ = yTw − θ
(50.3)

for some vector parameter w ∈ IRM and offset θ ∈ IR. The minus sign in front

of θ is for convenience. Let {x̄, ȳ} denote the first-order moments of the random

variables x and y, i.e., their means:

x̄ = Ex, ȳ = Ey (50.4a)

and let {σ2
x, Ry, rxy} denote their second-order moments, i.e., their (co)-variances

and cross-covariance:

σ2
x = E (x− x̄)2 (50.4b)

Ry = E (y − ȳ)(y − ȳ)T (50.4c)

rxy = E (x− x̄)(y − ȳ)T = rTyx (50.4d)

Theorem 29.1 showed that the LLMSE estimator and the resulting minimum

mean-square error (MMSE) are given by

x̂LLMSE − x̄ = rxyR
−1
y (y − ȳ) (50.5a)

MMSE = σ2
x − rxyR

−1
y ryx (50.5b)

In other words, the optimal parameters are given by

wo = R−1
y ryx, θo = ȳTwo − x̄ (50.6)

Note in particular that the offset parameter is unnecessary if the variables have

zero mean since in that case θo = 0. More importantly, observe that the estimator

x̂LLMSE requires knowledge of the first- and second-order moments of the random

variables {x,y}. When this information is not available, we need to follow a

different route to solve the inference problem. To do so, we will replace the

stochastic risk that appears in (50.3) by an empirical risk as follows:

(w⋆, θ⋆) = argmin
w,θ

{
P (w, θ)

∆
=

1

N

N−1∑

n=0

(
x(n)− (yTnw − θ)

)2
}

(50.7)

which is written in terms of a collection of N independent realizations {x(n), yn};

these measurements are assumed to arise from the underlying joint distribution
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50.1 Motivation 2167

for the variables {x,y} and they are referred to as the training data because they

will be used to determine the solution (w⋆, θ⋆). Once (w⋆, θ⋆) are learned, they

can then be used to predict the x-value corresponding to some future observation

y by using

x̂ = yTw⋆ − θ⋆ (50.8)

Obviously, under ergodicity, the empirical risk in (50.7) converges to the stochas-

tic risk in (50.3) as N → ∞. However, even if ergodicity does not hold, we can

still pose the empirical risk minimization problem (50.7) independently and seek

its solution. Note that we are denoting the empirical risk by the letter P (·); in

this case, it depends on two parameters: w and θ. We are also denoting the opti-

mal parameter values by (w⋆, θ⋆) to distinguish them from (wo, θo). As explained

earlier in the text, we use the ⋆ superscript to refer to minimizers of empirical

risks, and the o superscript to refer to minimizers of stochastic risks.

50.1.1 Stochastic Optimization

At this stage, one could consider learning the (w⋆, θ⋆) by applying any of the

stochastic optimization algorithms studied in earlier chapters, such as applying

a stochastic gradient algorithm or a mini-batch version of it, say,




select a sample {x(n),yn} at random at iteration n

let x̂(n) = yT

nwn−1 − θ(n− 1)

update wn = wn−1 + 2µyn(x(n)− x̂(n))

update θ(n) = θ(n− 1)− 2µ(x(n)− x̂(n))

(50.9)

This construction is based on using an instantaneous gradient approximation at

iteration n. The recursions can be grouped together as follows:

x̂(n) =
[
1 yT

n

] [ −θ(n− 1)

wn−1

]
(50.10a)

[
−θ(n)

wn

]
=

[
−θ(n− 1)

wn−1

]
+ 2µ

(
x(n)− x̂(n)

)[
1

yn

]
(50.10b)

which are expressed in terms of the extended variables of dimension M +1 each:

y′
∆
=

[
1

y

]
, w′ =

[
−θ

w

]
(50.11)

Using the extended notation we can write down the equivalent representation:

x̂(n) = (y′
n)

Tw′
n (50.12a)

w′
n = w′

n−1 + 2µy′
n(x(n)− x̂(n)) (50.12b)

After sufficient iterations, the estimators (wn,θ(n)) approach (w⋆, θ⋆). These

values can then be used to predict the hidden variable x(t) for any new obser-

vation yt as follows:

x̂(t) = yTt w
⋆ − θ⋆ (50.13)
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2168 Least-Squares Problems

It turns out, however, that problem (50.7) has a special structure that can be ex-

ploited to motivate a second exact (rather than approximate) recursive solution,

for updating wn−1 to wn, known as the recursive least-squares (RLS) algorithm.

50.1.2 Least-Squares Risk

Using the extended notation, we rewrite the empirical risk problem (50.7) in the

form

(w′)⋆ = argmin
w′∈IRM+1

{
P (w′)

∆
=

1

N

N−1∑

n=0

(
x(n)− (y′n)

Tw′
)2

}
(50.14)

without an offset parameter. For simplicity of notation, we will assume hence-

forth that the vectors (w, yn) have been extended according to (50.11) and will

continue to use the same notation (w, yn), without the prime subscript, for the

extended quantities:

y ←

[
1

y

]
, w ←

[
−θ

w

]
(50.15)

We will also continue to denote their dimension generically by M (rather than

M + 1). Thus, our problem becomes one of solving

w⋆ = argmin
w∈IRM

{
P (w)

∆
=

1

N

N−1∑

n=0

(
x(n)− yTnw

)2
}

(50.16)

from knowledge of N data pairs {x(n), yn}. We can rewrite this problem in a

more familiar least-squares form by collecting the data into convenient vector

and matrix quantities. For this purpose, we introduce the N ×M and N × 1

variables

H
∆
=




yT0
yT1
yT2
...

yTN−1



, d

∆
=




x(0)

x(1)

x(2)
...

x(N − 1)




(50.17)

The matrix H contains all observation vectors {yn} transposed as rows, while

the vector d contains all target signals {x(n)}. Then, the risk function takes the

form

P (w) =
1

N
‖d−Hw‖2 (50.18)

in terms of the squared Euclidean norm of the error vector d−Hw. The scaling

by 1/N does not affect the location of the minimizer w⋆ and, therefore, it can

be ignored. In this way, formulation (50.16) becomes the standard least-squares

problem:
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50.1 Motivation 2169

w⋆ ∆
= argmin

w∈IRM

‖d−Hw‖2 (standard least-squares) (50.19)

We motivated (50.19) by linking it to the MSE formulation (50.3) and replacing

the stochastic risk by an empirical risk. Of course, the least-squares problem

is of independent interest in its own right. Given a collection of data points

{x(n), yn}, with scalars x(n) and column vectors yn, we can formulate problem

(50.19) directly in terms of these quantities and seek the vector w that matches

Hw to d in the least-squares sense.

Example 50.1 (Maximum-likelihood interpretation) There is another way to moti-
vate the least-squares problem as the solution to a maximum-likelihood (ML) estima-
tion problem in the presence of Gaussian noise. Assume we collect N iid observations
{x(n),yn}, for 0 ≤ n ≤ N − 1. Assume further that these observations happen to
satisfy a linear regression model of the form:

x(n) = y
T

nw + v(n) (50.20)

for some unknown vector w ∈ IRM , and where v(n) is white Gaussian noise with zero
mean and variance σ2

v, i.e., v ∼ Nv(0, σ
2

v). It is straightforward to conclude that the
likelihood function of the joint observations {x(n),yn} given the model w, is

fx,y (y0, . . . , yN−1, x(0), . . . , x(N − 1);w)

= fv(v(0), . . . , v(N − 1);w)

=

N−1
∏

n=0

1√
2πσ2

v

exp

{

−
(

x(n)− yT

nw
)2

2σ2
v

}

=
1

(2πσ2
v)N/2

exp

{

− 1

2σ2
v

N−1
∑

n=0

(

x(n)− y
T

nw
)

2

}

(50.21)

so that the log-likelihood function is given by

ℓ ({x(n), yn}; w) = −N

2
ln(2πσ2

v) − 1

2σ2
v

N−1
∑

n=0

(

x(n)− y
T

nw
)

2

(50.22)

The maximization of the log-likelihood function over w leads to the equivalent problem

w
⋆ = argmin

w∈IRM

{

N−1
∑

n=0

(

x(n)− y
T

nw
)

2

}

(50.23)

which is the same least-squares problem (50.16). In Prob. 50.6 we consider a variation
of this argument in which the noise process v(n) is not white, which will then lead to
the solution of a weighted least-squares problem.

www.cambridge.org/9781009218283
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-21828-3 — Inference and Learning from Data
Ali H. Sayed
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2170Least-SquaresProblems

50.2NORMALEQUATIONS

Problem(50.19)canbesolvedinclosedformusingeitheralgebraicorgeometric

arguments.Weexpandtheleast-squaresrisk:

‖d−Hw‖
2

=‖d‖
2
−2d

T
Hw+w

T
H

T
Hw(50.24)

anddifferentiatewithrespecttowtofindthattheminimizerw
⋆

shouldsatisfy

thenormalequations:

H
T
Hw

⋆
=H

T
d(normalequations)(50.25)

Alternatively,wecanpursueageometricargumenttoarriveatthissameconclu-

sion.Notethat,foranyw,thevectorHwliesinthecolumnspan(orrangespace)

ofH,writtenasHw∈R(H).Therefore,theleast-squarescriterion(50.19)isin

effectseekingacolumnvectorintherangespaceofHthatisclosesttodinthe

Euclideannormsense.WeknowfromEuclideangeometrythattheclosestvector

todwithinR(H)canbeobtainedbyprojectingdontoR(H),asillustratedin

Fig.50.1.Thismeansthattheresidualvector,d−Hw
⋆
,shouldbeorthogonal

toallvectorsinR(H):

d−Hw
⋆
⊥Hp,foranyp(50.26)

whichisequivalentto

p
T
H

T
(d−Hw

⋆
)=0,foranyp(50.27)

Clearly,theonlyvectorthatisorthogonaltoanypisthezerovector,sothat

H
T
(d−Hw

⋆
)=0(50.28)

andwearriveagainatthenormalequations(50.25).
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d−Hw
?

Figure50.1Aleast-squaressolutionisobtainedwhend−Hw
⋆

isorthogonaltoR(H).
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50.2 Normal Equations 2171

50.2.1 Consistent Equations

We explained earlier in Section 1.51 that equations of the form (50.25) are always

consistent (i.e., they always have a solution). This is because the matrices HT

and HTH have the same range spaces so that, for any d and H:

HTd ∈ R(HTH) (50.29)

Moreover, the normal equations will either have a unique solution or infinitely

many solutions. The solution will be unique when HTH is invertible, which

happens when H has full column rank. This condition requires N ≥ M , which

means that there should be at least as many observations as the number of

unknowns in w. The full-rank condition implies that the columns of H are not

redundant. In this case, we obtain

w⋆ = (HTH)−1HTd (50.30)

In all other cases, the matrix product HTH will be rank-deficient. For instance,

this situation arises when N < M , which corresponds to the case in which we

have insufficient data (fewer measurements than the number of unknowns). This

situation is not that uncommon in practice. For example, it arises in streaming

data implementations when we have not collected enough data to surpass M .

When HTH is singular, the normal equations (50.25) will have infinitely many

solutions, all of them differing from each other by vectors in the nullspace of H –

recall (1.56). That is, for any two solutions {w⋆
1 , w

⋆
2} to (50.25), it will hold that

w⋆
2 = w⋆

1 + p, for some p ∈ N(H) (50.31)

Although unnecessary for the remainder of the discussions in this chapter, we

explain in Appendix 50.A that when infinitely many solutions w⋆ exist to the

least-squares problem (50.19), we can determine the solution with the small-

est Euclidean norm among these by employing the pseudo-inverse of H – see

expression (50.179). Specifically, the solution to the following problem

min
w∈IRM

‖w‖2, subject to HTHw = HTd (50.32)

is given by

w⋆ = H†d (50.33)

where H† denotes the pseudo-inverse matrix.

50.2.2 Minimum Risk

For any solution w⋆ of (50.25), we denote the resulting closest vector to d by

d̂ = Hw⋆ and refer to it as the projection of d onto R(H):

d̂ = Hw⋆ ∆
= projection of d onto R(H) (50.34)
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2172 Least-Squares Problems

It is straightforward to verify that even when the normal equations have a mul-

titude of solutions, w⋆, all of them will lead to the same value for d̂. This obser-

vation can be justified both algebraically and geometrically. From a geometric

point of view, projecting d onto R(H) results in a unique projection d̂. From

an algebraic point of view, if w⋆
1 and w⋆

2 are two arbitrary solutions, then from

(50.31) we find that

d̂2
∆
= Hw⋆

2 = H(w⋆
1 + p) = Hw⋆

1 = d̂1 (50.35)

What the different solutions w⋆ amount to, when they exist, are equivalent rep-

resentations for the unique d̂ in terms of the columns of H.

We denote the residual vector resulting from the projection by

d̃
∆
= d−Hw⋆ (50.36)

so that the orthogonality condition (50.28) can be rewritten as

HTd̃ = 0 (orthogonality condition) (50.37)

We express this orthogonality condition more succinctly by writing d̃ ⊥ R(H),

where the ⊥ notation is used to mean that d̃ is orthogonal to any vector in the

range space (column span) of H. In particular, since, by construction, d̂ ∈ R(H),

it also holds that

d̃ ⊥ d̂ or (d̂)Td̃ = 0 (50.38)

Let ξ denote the minimum risk value, i.e., the minimum value of (50.19). This

is sometimes referred to as the training error because it is the minimum value

evaluated on the training data {x(n), yn}. It can be evaluated as follows:

ξ = ‖d−Hw⋆‖2

= (d−Hw⋆)T(d−Hw⋆)

= (d−Hw⋆)T(d− d̂)

= dT(d−Hw⋆), since (d−Hw⋆) ⊥ d̂ by (50.38)

= dTd− dTHw⋆

= dTd− (w⋆)THTHw⋆, since dTH = (w⋆)THTH by (50.25)

= dTd− (d̂)Td̂ (50.39)

That is, we obtain the following two equivalent representations for the minimum

risk:

ξ = ‖d‖2 − ‖d̂‖2 = dTd̃ (minimum risk) (50.40)

50.2.3 Projections

When H has full column rank (and, hence, N ≥ M), the coefficient matrix

HTH becomes invertible and the least-squares problem (50.19) will have a unique

solution given by
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50.2 Normal Equations 2173

w⋆ = (HTH)−1HTd (50.41)

with the corresponding projection vector

d̂ = Hw⋆ = H(HTH)−1HTd (50.42)

The matrix multiplying d in the above expression is called the projection matrix

onto R(H) and we denote it by

PH
∆
= H(HTH)−1HT, when H has full column rank (50.43)

The designation projection matrix stems from the fact that multiplying d by

PH projects it onto the column span of H and results in d̂. Such projection

matrices play a prominent role in least-squares theory and they have many useful

properties. For example, projection matrices are symmetric and also idempotent,

i.e., they satisfy

P
T

H = PH , P
2
H = PH (50.44)

Note further that the residual vector, d̃ = d−Hw⋆, is given by

d̃ = d− PHd = (I − PH)d = P
⊥
Hd (50.45)

so that the matrix

P
⊥
H

∆
= I − PH (50.46)

is called the projection matrix onto the orthogonal complement space of H. It

is easy to see that the minimum risk value can be expressed in terms of P⊥
H as

follows:

ξ = dTd− (d̂)Td̂

= dTd− dTPT

HPHd

= dTd− dTPHd, since P
T

HPH = P
2
H = PH (50.47)

That is,

ξ = dTP⊥
Hd (50.48)

In summary, we arrive at the following statement for the solution of the standard

least-squares problem.
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2174 Least-Squares Problems

Theorem 50.1. (Solution of least-squares problem) Consider the standard

least-squares problem (50.19) where H ∈ IRN×M :

(a) When H has full column rank, which necessitates N ≥M , the least-squares

problem will have a unique solution given by w⋆ = (HTH)−1HTd.

(b) Otherwise, the least-squares problem will have infinitely many solutions w⋆

satisfying HTHw⋆ = HTd. Moreover, any two solutions will differ by vectors

in N(H) and the solution with the smallest Euclidean norm is given by w⋆ =

H†d.

In either case, the projection of d onto R(H) is unique and given by d̂ = Hw⋆.

Moreover, the minimum risk value is ξ = dTd̃, where d̃ = d− d̂.

50.2.4 Weighted and Regularized Variations

There are several extensions and variations of the least-squares formulation,

which we will encounter at different locations in our treatment. For example,

one may consider a weighted least-squares problem of the form

w⋆ ∆
= argmin

w∈IRM

{
(d−Hw)TR(d−Hw)

}
(weighted least-squares)

(50.49)

where R ∈ IRN×N is a symmetric positive-definite weighting matrix. Assume,

for illustration purposes, that R is diagonal with entries {r(n)}. Then, the above

problem reduces to (we prefer to restore the 1/N factor when using the original

data):

w⋆ ∆
= argmin

w∈IRM

{
1

N

N−1∑

n=0

r(n)
(
x(n)− yTnw

)2
}

(50.50)

where the individual squared errors appear scaled by r(n). In this way, errors

originating from some measurements will be scaled more or less heavily than

errors originating from other measurements. In other words, incorporating a

weighting matrix R into the least-squares formulation allows the designer to

control the relative importance of the errors contributing to the risk value.

One can also consider penalizing the size of the parameter w by modifying the

weighted risk function in the following manner:

(ℓ2-regularized weighted least-squares)

w⋆ ∆
= argmin

w∈IRM

{
ρ‖w‖2 + (d−Hw)TR(d−Hw)

}
(50.51)

where ρ > 0 is called an ℓ2-regularization parameter (since it penalizes the ℓ2-

norm of w). We will discuss regularization in greater detail in the next chapter.

Here, we comment briefly on its role. Observe, for instance, that if ρ is large, then

the term ρ‖w‖2 will have a nontrivial effect on the value of the risk function.

As such, when ρ is large, the solution w⋆ should have smaller Euclidean norm
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