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27 Mean-Square-Error Inference

Inference deals with the estimation of hidden parameters or random variables

from observations of other related variables. In this chapter, we study the ba-

sic, yet fundamental, problem of inferring an unknown random quantity from

observations of another random quantity by using the mean-square-error (MSE)

criterion. Several other design criteria can be used for inference purposes besides

MSE, such as the mean-absolute error (MAE) and the maximum a-posteriori

(MAP) criteria. We will encounter these possibilities in future chapters, starting

with the next chapter. We initiate our discussions of inference problems though

by focusing on the MSE criterion due to its mathematical tractability and be-

cause it sheds light on several important questions that arise in the study of

inference problems in general.

In our treatment of inference problems, we will encounter three broad formu-

lations:

(a) In one instance, we will model the unknown as a random variable, denoted

by the boldface symbol x. The objective will be to predict (or infer) the value

of x from observations of a related variable y. The predictor or estimator

for x will be denoted by x̂. Different design criteria will lead to different

constructions for x̂. In this chapter, we discuss the popular MSE criterion.

(b) In another instance, we will continue to model the unknown x as a random

variable but will limit its values to discrete levels, such as having x assume

the values +1 or −1. This type of formulation is prevalent in classification

problems and will be discussed at length in future chapters, starting with

the next chapter, where we examine the Bayes classifier.

(c) In a third instance, we will model the unobservable as an unknown constant,

denoted by the Greek symbol θ, rather than a random variable. This type

of problem is frequent in applications requiring fitting models onto data and

will be discussed in future chapters, for example, when we introduce the

maximum-likelihood and expectation maximization paradigms.
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1054 Mean-Square-Error Inference

27.1 INFERENCE WITHOUT OBSERVATIONS

We consider first a simple yet useful estimation problem, which relates to esti-

mating a random variable x ∈ IR when the only information that is available

about x is its mean, x̄. Our objective is to estimate the value that x will assume

in a given experiment. We denote the estimate for x by the notation x̂; it is a

deterministic quantity (i.e., a number). But how do we come up with a value for

x̂ ? And how do we decide whether this value is optimal or not? And if optimal,

in what sense? These inquiries are at the heart of every inference problem. To

answer them, we first need to choose a cost (also called risk) function to penalize

the estimation error. The resulting estimate x̂ will be optimal only in the sense

that it leads to the smallest cost or risk value. Different choices for the cost func-

tion will generally lead to different choices for x̂, each of which will be optimal

in its own way.

27.1.1 Problem Formulation

The design criterion we study first is the famed MSE criterion; several other

criteria are possible and we discuss other important choices in the next chapter.

The MSE criterion is based on introducing the error signal:

x̃
∆
= x− x̂ (27.1)

and on determining x̂ by minimizing the MSE, which is defined as the mean of

the squared error x̃
2:

x̂
∆
= argmin

x̂

E x̃
2 (27.2)

The error x̃ is a random variable since x is random. The resulting estimate, x̂,

is called the least-mean-squares estimate (LMSE) of x. For added emphasis, we

could have written x̂MSE, with the subscript MSE, in order to highlight the fact

that this is an estimate for x that is based on minimizing the MSE criterion de-

fined by (27.2). This notation is unnecessary in this chapter because we will be

discussing mainly the MSE criterion. However, in later chapters, when we intro-

duce other design criteria, it will become necessary to use the MSE subscript to

distinguish the MSE estimate, x̂MSE, from other estimates such as x̂MAP, x̂MAE,

or x̂ML, where the subscripts MAP, MAE, and ML will be referring to maximum

a-posteriori, mean-absolute error, and maximum-likelihood estimators.

Returning to (27.2), it is immediate to verify that the solution x̂ is given by

x̂ = x̄ (27.3)
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27.1 Inference without Observations 1055

and that the resulting minimum mean-square error (MMSE) is

MMSE = E x̃
2 = σ2

x
(27.4)

We therefore say that the best estimate of a random variable (best from the

perspective of MSE estimation) when only its mean is known is the mean value

of the random variable itself.

Proof of (27.3)–(27.4) using differentiation: We expand the MSE from (27.2) to get

E x̃
2 = E (x− x̂)2 = Ex

2 − 2x̄x̂+ x̂2 (27.5)

and then differentiate the right-hand side with respect to the unknown x̂. Setting the
derivative to zero gives

∂ E (x− x̂)2

∂x̂
= −2x̄+ 2x̂ = 0 =⇒ x̂ = x̄ (27.6)

This choice for x̂ minimizes the MSE since the risk (27.5) is quadratic in x̂.

�

Proof of (27.3)–(27.4) using completion-of-squares: An alternative argument to arrive
at the same conclusion relies on the use of a completion-of-squares step. It is immediate
to verify that the risk function in (27.2) can be rewritten in the following form, by
adding and subtracting x̄:

E x̃
2 = E ((x− x̄) + (x̄− x̂))2

= E (x− x̄)2 + (x̄− x̂)2 + 2 E (x− x̄)︸ ︷︷ ︸
=0

(x̄− x̂)

= σ2

x + (x̄− x̂)2 (27.7)

The above result expresses the risk as the sum of two nonnegative terms where only the
second term depends on the unknown, x̂. It is clear that the choice x̂ = x̄ annihilates
the second term and results in the smallest possible value for the MSE. This value is
referred to as the MMSE and is equal to σ2

x.

�

27.1.2 Interpretation

There are good reasons for using the MSE criterion (27.2). The simplest one

perhaps is that the criterion is amenable to mathematical manipulations, more

so than any other criterion. In addition, the criterion is attempting to force the

estimation error, x̃, to assume values close to its mean, which is zero since

E x̃ = E (x− x̂) = E (x− x̄) = x̄− x̄ = 0 (27.8)

Therefore, by minimizing E x̃
2, we are in effect minimizing the variance of the

error, x̃. Then, in view of the discussion in Section 3.2 regarding the interpre-

tation of the variance of a random variable, we find that the MSE criterion is

attempting to increase the likelihood of small errors.
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1056 Mean-Square-Error Inference

The effectiveness of the estimation procedure (27.2) can be measured by ex-

amining the value of the resulting minimum risk, which is the variance of the

estimation error, denoted by σ2
x̃
= E x̃

2. The above discussion tells us that

σ2
x̃

= σ2
x

(27.9)

so that the estimate x̂ = x̄ does not reduce our initial uncertainty about x: The

error variable has the same variance as x itself. We therefore find that, in this

initial scenario, the performance of the MSE design procedure is limited. We

are interested in estimation procedures that result in error variances that are

smaller than the original signal variance. We discuss one such procedure in the

next section.

The reason for the poor performance of the estimate x̂ = x̄ lies in the lack

of more sophisticated prior information about x. Note that result (27.3) simply

tells us that the best we can do, in the absence of any other information about

a random variable x, other than its mean, is to use the mean value of x as our

estimate. This result is at least intuitive. After all, the mean value of a random

variable is, by definition, an indication of the value that we expect to observe

on average in repeated experiments. Hence, in answer to the question, “What

is the best guess for x? ” the analysis tells us that the best guess is what we

would expect for x on average! This is a circular answer, but one that is at least

consistent with intuition.

Example 27.1 (Guessing the class of an image) Assume a box contains an equal num-
ber of images of cats and dogs. An image is selected at random from the box and a
random variable x is associated with this experiment. The variable x assumes the value
x = +1 if the selected image is a cat and it assumes the value x = −1 otherwise. We say
that x represents the class (or label) variable: Its value specifies whether the selected
image belongs to one class (+1 corresponding to cats) or the other (−1 corresponding
to dogs). It is clear that x is a binary random variable assuming the values ±1 with
equal probability. Then,

x̄ =
1

2
× (+1) +

1

2
× (−1) = 0 (27.10)

σ2

x = Ex
2 = 1 (27.11)

If a user were to predict the class of the image that will be selected from the box
beforehand then, according to the MSE criterion, the best estimate for x will be x̂ =
x̄ = 0. This estimate value is neither +1 nor −1. This example shows that the LMSE
estimate does not always lead to a meaningful solution! In this case, using x̂ = 0 is not
useful in guessing whether the realization for x will be +1 or −1. If we could incorporate
into the design procedure some additional information, besides the mean of x, then we
could perhaps come up with a better prediction for the class of the image.

Example 27.2 (Predicting a crime statistic) The US Federal Bureau of Investigation
(FBI) publishes statistics on the crime rates in the country on an annual basis. Figure
27.1 plots the burglary rates per 100,000 inhabitants for the period 1997–2016. Assume
we model the annual burglary rate as a random variable x with some mean x̄. By
examining the plot, we find that this assumption is more or less reasonable only over
the shorter range 2000–2009 during which the burglary rate remained practically flat
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27.2 Inference with Observations 1057

with fluctuations around some nominal average value. The rates are declining before
2000 and after 2010. Assume we did not know the burglary rate for the year 2010
and wanted to predict its value from the burglary rates observed in prior years. In this
example, the probability distribution of x is not known to evaluate its mean x̄. Instead,
we have access to measurements for the years 1997–2015. We can use the data from
the years 2000–2009 to compute a sample mean and use it to predict x(2010):

x̂(2010) =
1

10

2009∑

n=2000

x(n) ≈ 732.6 (27.12)
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Figure 27.1 Plot of the annual burglary rates per 100,000 inhabitants in the United
States during 1997–2016. Source: US Criminal Justice Information Services Division.
Data found at https://ucr.fbi.gov/crime-in-the-u.s/2016/crime-in-the-u.s.
-2016/tables/table-1.

The value 732.6 is close enough to the actual burglary rate observed for 2010, which is
701. If we were instead to predict the burglary rate for the year 2016 by using the data
for the entire period 1997–2015, we would end up with

x̂(2016) ≈ 715.5 (27.13)

which is clearly a bad estimate since the actual value is 468.9.

This example illustrates the fact that we will often be dealing with distributions that
vary (i.e., drift) over time for various reasons, such as changing environmental condi-
tions or, in the case of this example, crime deterrence policies that may have been put
in place. This possibility necessitates the development of inference techniques that are
able to adapt to variations in the statistical properties of the data in an automated man-
ner. In this example, the statistical properties of the data during the period 2000–2009
are clearly different from the periods before 2000 and after 2009.

27.2 INFERENCE WITH OBSERVATIONS

Let us examine next the case in which more is known about the random variable

x, beyond its mean. Let us assume that we have access to an observation of a

second random variable y that is related to x in some way. For example, y could
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1058 Mean-Square-Error Inference

be a noisy measurement of x, say, y = x+ v, where v denotes the disturbance,

or y could be the sign of x, or dependent on x in some other way.

27.2.1 Conditional Mean Estimator

Given two dependent random variables {x,y}, we pose the problem of deter-

mining the LMSE estimator for x from an observation of y. Observe that we

are now employing the terminology “estimator” of x as opposed to “estimate”

of x. In order to highlight this distinction, we denote the estimator of x by the

boldface notation x̂; it is now a random variable since it will be a function of y,

i.e.,

x̂ = c(y) (27.14)

for some function c(·) to be determined. Once the function c(·) has been deter-

mined, evaluating it at a particular observation for y, say, at y = y, will result

in an estimate for x, i.e.,

x̂ = c(y)
∣∣∣
y=y

= c(y) (27.15)

Different occurrences for y will lead to different estimates x̂. In Section 27.1 we

did not need to make this distinction between an estimator x̂ and an estimate

x̂. There we sought directly an estimate x̂ for x since we did not have access to

a random variable y; we only had access to the deterministic quantity x̄.

The criterion we use to determine the estimator x̂ will continue to be the same

MSE criterion. We define the error signal:

x̃
∆
= x− x̂ (27.16)

and determine x̂ by minimizing the MSE over all possible choices for the function

c(·):

min
c(·)

E x̃
2
, subject to x̂ = c(y) (27.17)

We establish in the following that the solution of (27.17) is given by the condi-

tional mean estimator:

x̂ = E (x|y = y) (27.18)

That is, the optimal choice for c(y) in (27.15) is

co(y) = E (x|y = y) (27.19)

Recall from (3.100) that for continuous random variables x and y, the conditional

expectation is computed via the integral expression:

E (x|y = y) =

ˆ

x∈X

xfx|y(x|y)dx (27.20a)
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27.2 Inference with Observations 1059

over the domain of x, while for discrete random variables:

E (x|y = y) =
∑

x

xP(x = x|y = y) (27.20b)

in terms of the conditional probability values and where the sum is over the

possible realizations for x. We continue our presentation by using the notation

for continuous random variables without loss in generality.

Returning to (27.18), this estimator is obviously unbiased since from the result

of Prob. 3.25 we know that

E x̂ = E

(
E (x|y)

)
= Ex = x̄ (27.21)

Moreover, the resulting minimum cost or MMSE will be given by

MMSE
∆
= E x̃

2 = σ2
x

− σ2
x̂

(27.22)

which is smaller than the earlier value (27.4). Result (27.18) states that the least-

mean-squares estimator of x is its conditional expectation given y. This result

is again intuitive. In answer to the question, “What is the best guess for x given

that we observe y?” the analysis tells us that the best guess is what we would

expect for x given the occurrence of y!

Derivation of (27.18) using differentiation: Using again the result of Prob. 3.25 we
have

E (x− x̂)2 = E

{
E

(
(x− x̂)2 |y

)}

= E

{
E

(
x

2 − 2xx̂+ x̂
2 |y

)}

= E

{
E

(
x

2 − 2xc(y) + c2(y) |y
)}

, since x̂ = c(y)

= E

{
E (x2|y)− 2c(y)E (x|y) + c2(y)

}
(27.23)

It is sufficient to minimize the inner expectation relative to c(y), for any realization
y = y. Differentiating and setting the derivative to zero at the optimal solution co(y)
gives co(y) = E (x|y = y).

�

Derivation of (27.18) using completion-of-squares: In this second derivation, we will
establish two useful intermediate results, namely, the orthogonality conditions (27.26)
and (27.29). We again refer to the result of Prob. 3.25, which we write more explicitly
as

Ex = E y

(
E x|y(x|y)

)
(27.24)

where the outer expectation is relative to the distribution of y, while the inner expec-
tation is relative to the conditional distribution of x given y. It follows that, for any
real-valued function of y, say, g(y),
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1060 Mean-Square-Error Inference

Exg(y) = E y

{
E x|y

(
xg(y) |y

)}

= E y

{
E x|y(x|y)g(y)

}

= E y

{
E x|y(x|y)

}
g(y) (27.25)

This means that, for any g(y), it holds that

E

(
x− E (x|y)

)
g(y) = 0 ⇐⇒ x̃ ⊥ g(y) (orthogonality condition) (27.26)

Result (27.26) states that the error variable x̃ = x − E (x|y) is orthogonal to any
function g(·) of y; we also represent this result by the compact notation x̃ ⊥ g(y).
However, since x−E (x|y) is zero mean, then it also holds that x̃ is uncorrelated with
g(y).

Using this intermediate result, we return to the risk (27.17), add and subtract E (x|y)
to its argument, and express it as

E (x− x̂)2 = E

(
(x− E (x|y) + E (x|y)− x̂

)2

(27.27)

The term E (x|y) − x̂ is a function of y. Therefore, if we choose g(y) = E (x|y) − x̂,
then from the orthogonality property (27.26) we conclude that

E (x− x̂)2 = E

(
x− E (x|y)

)2

+ E

(
E (x|y)− x̂

)2

(27.28)

Now, only the second term on the right-hand side is dependent on x̂ and the MSE is
minimized by choosing x̂ = E (x|y). To evaluate the resulting MMSE we first use the
orthogonality property (27.26), along with the fact that x̂ = E (x|y) is itself a function
of y, to conclude that

E (x− x̂)x̂ = 0 ⇐⇒ x̃ ⊥ x̂ (27.29)

In other words, the estimation error, x̃, is uncorrelated with the optimal estimator.
Using this result, we can evaluate the MMSE as follows:

E x̃
2 = E (x− x̂)(x− x̂)

= E (x− x̂)x (because of (27.29))

= Ex
2 − E x̂(x̃+ x̂) (since x = x̃+ x̂)

= Ex
2 − E x̂

2 (because of (27.29) again)

=
(
Ex

2 − x̄2
)
+

(
x̄2 − E x̂

2
)

= σ2

x − σ2

x̂ (27.30)

�

Example 27.3 (From soft to hard decisions) Let us return to Example 27.1, where
x is a binary signal that assumes the values ±1 with probability 1/2. Recall that x

represents the class of the selected image (cats or dogs). In that example, we only
assumed knowledge of the mean of x and concluded that the resulting MSE estimate
was not meaningful because it led to x̂ = 0, which is neither +1 nor −1. We are going to
assume now that we have access to some additional information about x. Specifically,

www.cambridge.org/9781009218269
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-21826-9 — Inference and Learning from Data
Volume 2
Ali H. Sayed
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

27.2InferencewithObservations1061

wearegoingtoassumethatwehavesomenoisymeasurementofx,denotedbyy,
say,as

y=x+v(27.31)

wherethesymbolvdenotesthedisturbance.Howdomeasurementsyofthistypearise?
Wearegoingtoencounterlaterinthistextseveralinferencetechniquesthatprovide
approximateestimatesfordiscretevariables.Ratherthandetectwhethertheunknown
xis+1or−1(whichwerefertoasperformingharddecisions),theseothermethods
willreturnapproximatevaluesforxsuchasclaimingthatitis0.9or−0.7(whichwe
refertoasperformingsoftdecisions).Thesoftvalueisareal(andnotdiscrete)number
anditcanbeinterpretedasbeingaperturbedversionoftheactuallabelx.

Wearethenfacedwiththeproblemofdecidingwhetherx=±1fromthesoftversion
y.Obviously,thenatureoftheperturbationvin(27.31)dependsonthemethod
thatisusedtogeneratetheapproximationy.Inthisexample,andinordertokeep
theanalysistractable,wewillassumethatvandxareindependentofeachother
and,moreover,thatvhaszeromean,unitvariance,andisGaussian-distributedwith
probabilitydensityfunction(pdf):

fv(v)=
1

√
2π

e
−v

2
/2

(27.32)

OurintuitiontellsusthatweshouldbeabletodobetterherethaninExample27.1.
Butbeware,evenhere,wewillarriveatsomeinterestingconclusions.Accordingto
(27.18),theoptimalestimatorforxgivenyistheconditionalmeanx̂=E(x|y),
whichweevaluatedearlierin(3.117)anddeterminedthat:

x̂=tanh(y)
∆
=

e
y
−e

−y

e
y
+e−y(27.33)

TheresultisrepresentedinFig.27.2.Ifthevarianceofthemeasurementnoisevwere
notfixedat1butdenotedmoregenericallybyσ

2
v,thenthesameargumentwouldlead

tox̂=tanh(y/σ
2
v)withyscaledbyσ

2
v–seeProb.27.2.
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<latexit sha1_base64="D5YZd7GsHpPBEwmmbL671V24ZnQ=">AAACEHicbVBNS8NAEJ3Ur1q/qh69BIvoQUpSED0WvHisYFuhCWWz2bRLN7thd1MIoT/Bi3/FiwdFvHr05r9x2wbU1gcLjzdvZmdekDCqtON8WaWV1bX1jfJmZWt7Z3evun/QUSKVmLSxYELeB0gRRjlpa6oZuU8kQXHASDcYXU/r3TGRigp+p7OE+DEacBpRjLSR+tVTjwvKQ8K1bYjKPK/yo4hAETkunDWn7sxgLxO3IDUo0OpXP71Q4DQ2czBDSvVcJ9F+jqSmmJFJxUsVSRAeoQHpGcpRTJSfzw6a2CdGCe1ISPPMHjP1d0eOYqWyODDOGOmhWqxNxf9qvVRHV35OeZJqwvH8oyhlthb2NB07pJJgzTJDEJbU7GrjIZIIa5NhxYTgLp68TDqNuntRd24bteZ5EUcZjuAYzsCFS2jCDbSgDRge4Ale4NV6tJ6tN+t9bi1ZRc8h/IH18Q2EqJ1z</latexit>

noisy

observation

Figure27.2Estimationofabinarysignal±1observedunderunit-varianceadditive
Gaussiannoise.

Figure27.3plotsthefunctiontanh(y).Weseethatittendsto±1asy→±∞.For
othervaluesofy,thefunctionassumesrealvaluesthataredistinctfrom±1.Thisis
abitpuzzlingfromthedesigner’sperspective.Thedesignerisinterestedinknowing
whetherthesymbolxis+1or−1basedontheobservedvalueofy.Construction
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(27.33) tells the designer to estimate x by computing tanh(y). But, once again, this
value will not be +1 or −1; it will be a real number somewhere inside the interval
(−1, 1). The designer will be induced to make a hard decision of the form:

decide in favor of

{
+1, if tanh(y) is nonnegative
−1, if tanh(y) is negative

(27.34)

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

Figure 27.3 A plot of the hyperbolic tangent function, tanh(y). Observe that the
curve tends to ±1 as y → ±∞.

In effect, the designer is implementing the alternative estimator:

x̂ = sign
(
tanh(y)

)
(27.35)

where sign(·) denotes the sign of its argument; it is equal to +1 if the argument is
nonnegative and −1 otherwise:

sign(x)
∆
=

{
+1, if x ≥ 0
−1, if x < 0

(27.36)

We therefore have a situation where the optimal estimator (27.33), although known in
closed form, does not solve the original problem of recovering the symbols ±1 directly.
Instead, the designer is forced to implement a suboptimal solution; it is suboptimal
from a LMSE point of view. Actually, the designer could consider implementing the
following simpler suboptimal estimator directly:

x̂ = sign(y) (27.37)

where the sign(·) function operates directly on y rather than on tanh(y) – see Fig. 27.4.
Both suboptimal implementations (27.35) and (27.37) lead to the same result since, as
is evident from Fig. 27.3:

sign
(
tanh(y)

)
= sign(y) (27.38)

We say that implementation (27.37) provides hard decisions, while implementation
(27.33) provides soft decisions. We will revisit this problem later in Example 28.3 and
show how the estimator (27.37) can be interpreted as being optimal relative to another
design criterion; specifically, it will be the optimal Bayes classifier for the situation
under study.

The purpose of Examples 27.1 and 27.3 is not to confuse the reader, but to stress the
fact that an optimal estimator is optimal only in the sense that it satisfies a certain
optimality criterion. One should not confuse an optimal guess with a perfect guess. One
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