Inference and Learning from Data

Volume I

This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference.

This first volume, *Foundations*, introduces core topics in inference and learning, such as matrix theory, linear algebra, random variables, convex optimization, stochastic optimization, and decentralized methods, and prepares students for studying their practical application in later volumes.

A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 600 end-of-chapter problems (including solutions for instructors), 180 solved examples, 100 figures, datasets, and download-able Matlab code. Supported by sister volumes *Inference* and *Learning*, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, statistical analysis, data science, and inference.

Ali H. Sayed is Professor and Dean of Engineering at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. He has also served as Distinguished Professor and Chairman of Electrical Engineering at the University of California, Los Angeles (UCLA), USA, and as President of the IEEE Signal Processing Society. He is a member of the US National Academy of Engineering (NAE) and The World Academy of Sciences (TWAS), and a recipient of several awards, including the 2022 IEEE Fourier Award and the 2020 IEEE Norbert Wiener Society Award. He is a Fellow of the IEEE, EURASIP, and AAAS.

Inference and Learning from Data

Volume I: Foundations

ALI H. SAYED

École Polytechnique Fédérale de Lausanne University of California at Los Angeles

Cambridge University Press & Assessment 978-1-009-21812-2 — Inference and Learning from Data Volume 1 Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781009218122 DOI: 10.1017/9781009218146

© Ali H. Sayed 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

Printed in the United Kingdom by Bell and Bain Ltd

A catalogue record for this publication is available from the British Library.

ISBN - 3 Volume Set 978-1-009-21810-8 Hardback ISBN - Volume I 978-1-009-21812-2 Hardback ISBN - Volume II 978-1-009-21826-9 Hardback ISBN - Volume III 978-1-009-21828-3 Hardback

Additional resources for this publication at www.cambridge.org/sayed-vol1

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In loving memory of my parents

1

2

Cambridge University Press & Assessment 978-1-009-21812-2 — Inference and Learning from Data Volume 1 Frontmatter <u>More Information</u>

Contents

VOLUME I FOUNDATIONS

Preface		page xxvii
P.1	Emphasis on Foundations	xxvii
P.2	Glimpse of History	xxix
P.3	Organization of the Text	xxxi
P.4	How to Use the Text	xxxiv
P.5	Simulation Datasets	xxxvii
P.6	Acknowledgments	xl
Nota	tion	xlv
Matr	ix Theory	1
1.1	Symmetric Matrices	1
1.2	Positive-Definite Matrices	5
1.3	Range Spaces and Nullspaces	7
1.4	Schur Complements	11
1.5	Cholesky Factorization	14
1.6	QR Decomposition	18
1.7	Singular Value Decomposition	20
1.8	Square-Root Matrices	22
1.9	Kronecker Products	24
1.10	Vector and Matrix Norms	30
1.11	Perturbation Bounds on Eigenvalues	37
1.12	Stochastic Matrices	38
1.13	Complex-Valued Matrices	39
1.14	Commentaries and Discussion	41
	Problems	47
1.A	Proof of Spectral Theorem	50
1.B	Constructive Proof of SVD	52
	References	53
Vect	or Differentiation	59
2.1	Gradient Vectors	59

2.2 Hessian Matrices

62

viii	Con	tents	
	2.3	Matrix Differentiation	63
	2.4	Commentaries and Discussion	65
		Problems	65
		References	67
3	Ran	68	
	3.1	Probability Density Functions	68
	3.2	Mean and Variance	71
	3.3	Dependent Random Variables	77
	3.4	Random Vectors	93
	3.5	Properties of Covariance Matrices	96
	3.6	Illustrative Applications	97
	3.7	Complex-Valued Variables	106
	3.8	Commentaries and Discussion	109
		Problems	112
	$3.\mathrm{A}$	Convergence of Random Variables	119
	$3.\mathrm{B}$	Concentration Inequalities	122
		References	128
4	Gau	132	
	4.1	Scalar Gaussian Variables	132
	4.2	Vector Gaussian Variables	134
	4.3	Useful Gaussian Manipulations	138
	4.4	Jointly Distributed Gaussian Variables	144
	4.5	Gaussian Processes	150
	4.6	Circular Gaussian Distribution	155
	4.7	Commentaries and Discussion	157
		Problems	160
		References	165
5	Expo	onential Distributions	167
	5.1	Definition	167
	5.2	Special Cases	169
	5.3	Useful Properties	178
	5.4	Conjugate Priors	183
	5.5	Commentaries and Discussion	187
		Problems	189
	5.A	Derivation of Properties	192
		References	195
6	Entr	ropy and Divergence	196
	6.1	Information and Entropy	196
	6.2	Kullback–Leibler Divergence	204
	6.3	Maximum Entropy Distribution	209

			Contents	ix
	6.4	Moment Matching		211
	6.5	Fisher Information Matrix		213
	6.6	Natural Gradients		217
	6.7	Evidence Lower Bound		227
	6.8	Commentaries and Discussion		231
		Problems		234
		References		237
7	Ranc	lom Processes		240
	7.1	Stationary Processes		240
	7.2	Power Spectral Density		245
	7.3	Spectral Factorization		252
	7.4	Commentaries and Discussion		255
		Problems		257
		References		259
8	Conv	vex Functions		261
	8.1	Convex Sets		261
	8.2	Convexity		263
	8.3	Strict Convexity		265
	8.4	Strong Convexity		266
	8.5	Hessian Matrix Conditions		268
	8.6	Subgradient Vectors		272
	8.7	Jensen Inequality		279
	8.8	Conjugate Functions		281
	8.9	Bregman Divergence		285
	8.10	Commentaries and Discussion		290
		Problems		293
		References		299
9	Conv	vex Optimization		302
	9.1	Convex Optimization Problems		302
	9.2	Equality Constraints		310
	9.3	Motivating the KKT Conditions		312
	9.4	Projection onto Convex Sets		315
	9.5	Commentaries and Discussion		322
		Problems		323
		References		328
10	Lipso	chitz Conditions		330
	10.1	Mean-Value Theorem		330
	10.2	δ -Smooth Functions		332
	10.3	Commentaries and Discussion		337
		Problems		338
		References		340

х

Cambridge University Press & Assessment 978-1-009-21812-2 — Inference and Learning from Data Volume 1 Frontmatter <u>More Information</u>

Contents

11	Prox	imal Operator	341
	11.1	Definition and Properties	341
	11.2	Proximal Point Algorithm	347
	11.3	Proximal Gradient Algorithm	349
	11.4	Convergence Results	354
	11.5	Douglas–Rachford Algorithm	356
	11.6	Commentaries and Discussion	358
		Problems	362
	11.A	Convergence under Convexity	366
	11.B	Convergence under Strong Convexity	369
		References	372
12	Grad	lient-Descent Method	375
	12.1	Empirical and Stochastic Risks	375
	12.2	Conditions on Risk Function	379
	12.3	Constant Step Sizes	381
	12.4	Iteration-Dependent Step-Sizes	392
	12.5	Coordinate-Descent Method	402
	12.6	Alternating Projection Algorithm	413
	12.7	Commentaries and Discussion	418
		Problems	425
	12.A	Zeroth-Order Optimization	433
		References	436
13	Conj	ugate Gradient Method	441
	13.1	Linear Systems of Equations	441
	13.2	Nonlinear Optimization	454
	13.3	Convergence Analysis	459
	13.4	Commentaries and Discussion	465
		Problems	466
		References	469
14	Subg	radient Method	471
	14.1	Subgradient Algorithm	471
	14.2	Conditions on Risk Function	475
	14.3	Convergence Behavior	479
	14.4	Pocket Variable	483
	14.5	Exponential Smoothing	486
	14.6	Iteration-Dependent Step Sizes	489
	14.7	Coordinate-Descent Algorithms	493
	14.8	Commentaries and Discussion	496
		Problems	498
	14.A	1 0	501
		References	505

			Contents	xi
15		imal and Mirror-Descent Methods		507
	15.1	Proximal Gradient Method		507
	15.2	Projection Gradient Method		515
	15.3	Mirror-Descent Method		519
	15.4	Comparison of Convergence Rates		537
	15.5	Commentaries and Discussion		539
		Problems		541
		References		544
16	Stoc	hastic Optimization		547
	16.1	Stochastic Gradient Algorithm		548
	16.2	Stochastic Subgradient Algorithm		565
	16.3	Stochastic Proximal Gradient Algorithm		569
	16.4	Gradient Noise		574
	16.5	Regret Analysis		576
	16.6	Commentaries and Discussion		582
		Problems		586
	16.A	Switching Expectation and Differentiation		590
		References		595
17	Adap	otive Gradient Methods		599
	17.1	Motivation		599
	17.2	AdaGrad Algorithm		603
	17.3	RMSprop Algorithm		608
	17.4	ADAM Algorithm		610
	17.5	Momentum Acceleration Methods		614
	17.6	Federated Learning		619
	17.7	Commentaries and Discussion		626
		Problems		630
	17.A	Regret Analysis for ADAM		632
		References		640
18	Grad	ient Noise		642
	18.1	Motivation		642
	18.2	Smooth Risk Functions		645
	18.3	Gradient Noise for Smooth Risks		648
	18.4	Nonsmooth Risk Functions		660
	18.5	Gradient Noise for Nonsmooth Risks		665
	18.6	Commentaries and Discussion		673
		Problems		675
	18.A	Averaging over Mini-Batches		677
	18.B	Auxiliary Variance Result		679
		References		681

×ii	Cont	ents	
19	Conv	ergence Analysis I: Stochastic Gradient Algorithms	683
	19.1	Problem Setting	683
	19.2	Convergence under Uniform Sampling	686
	19.3	Convergence of Mini-Batch Implementation	691
	19.4	Convergence under Vanishing Step Sizes	692
	19.5	Convergence under Random Reshuffling	698
	19.6	Convergence under Importance Sampling	701
	19.7	Convergence of Stochastic Conjugate Gradient	707
	19.8	Commentaries and Discussion	712
		Problems	716
	19.A	Stochastic Inequality Recursion	720
	$19.\mathrm{B}$	Proof of Theorem 19.5	722
		References	727
20	Conv	ergence Analysis II: Stochastic Subgradient Algorithms	730
	20.1	Problem Setting	730
	20.2	Convergence under Uniform Sampling	735
	20.3	Convergence with Pocket Variables	738
	20.4	Convergence with Exponential Smoothing	740
	20.5	Convergence of Mini-Batch Implementation	745
	20.6	Convergence under Vanishing Step Sizes	747
	20.7	Commentaries and Discussion	750
		Problems	753
		References	754
21	Conv	ergence Analysis III: Stochastic Proximal Algorithms	756
	21.1	Problem Setting	756
	21.2	Convergence under Uniform Sampling	761
	21.3	Convergence of Mini-Batch Implementation	765
	21.4	Convergence under Vanishing Step Sizes	766
	21.5	Stochastic Projection Gradient	769
	21.6	Mirror-Descent Algorithm	771
	21.7	Commentaries and Discussion	774
		Problems	775
		References	776
22	Varia	nce-Reduced Methods I: Uniform Sampling	779
	22.1	Problem Setting	779
	22.2	Naïve Stochastic Gradient Algorithm	782
	22.3	Stochastic Average-Gradient Algorithm (SAGA)	785
	22.4	Stochastic Variance-Reduced Gradient Algorithm (SVRG)	793
	22.5	Nonsmooth Risk Functions	799
	22.6	Commentaries and Discussion	806
		Problems	808

810 813
813
815
816
816
818
822
827
830
831
832
833
834
838
842
845
849
851
852
852
860
865
872
874
876
877
888
897
900
902
903
909
913
918
935
940
943
947
949
949
965

xiv	Contents	
a c		0.00
26	Decentralized Optimization II: Primal–Dual Methods 26.1 Motivation	969 969
	26.1 Motivation 26.2 EXTRA Algorithm	909 970
	26.3 EXACT Diffusion Algorithm	970 972
	26.4 Distributed Inexact Gradient Algorithm	972
	26.5 Augmented Decentralized Gradient Mgbridini 26.5 Augmented Decentralized Gradient Method	978 978
	26.6 ATC Tracking Method	979 979
	26.7 Unified Decentralized Algorithm	983
	26.8 Convergence Performance	985
	26.9 Dual Method	987
	26.10 Decentralized Nonconvex Optimization	990
	26.11 Commentaries and Discussion	995
	Problems	998
	26.A Convergence of Primal–Dual Algorithms	1000
	References	1006
	Author Index	1009
	Subject Index	1033
	VOLUME II INFERENCE	
	Preface	xxvii
	P.1 Emphasis on Foundations	xxvii
	P.2 Glimpse of History	xxix
	P.3 Organization of the Text	xxxi ·
	P.4 How to Use the Text	xxxiv
	P.5 Simulation Datasets P.6 Acknowledgments	xxxvii xl
	P.6 Acknowledgments Notation	xlv
27	Mean-Square-Error Inference	1053
21	27.1 Inference without Observations	1055
	27.2 Inference with Observations 27.2 Inference with Observations	1054
	27.3 Gaussian Random Variables	1066
	27.4 Bias–Variance Relation	1072
	27.5 Commentaries and Discussion	1082
	Problems	1085
	27.A Circular Gaussian Distribution	1088
	References	1090
28	Bayesian Inference	1092
	28.1 Bayesian Formulation	1092
	28.2 Maximum A-Posteriori Inference	1094
	28.3 Bayes Classifier	1097
	28.4 Logistic Regression Inference	1106

			Contents	xv
	28.5	Discriminative and Generative Models		1110
	28.6	Commentaries and Discussion		1113
		Problems		1116
		References		1119
29	Linea	r Regression		1121
	29.1	Regression Model		1121
	29.2	Centering and Augmentation		1128
	29.3	Vector Estimation		1131
	29.4	Linear Models		1134
	29.5	Data Fusion		1136
	29.6	Minimum-Variance Unbiased Estimation		1139
	29.7	Commentaries and Discussion		1143
		Problems		1145
	29.A	v 1		1151
		References		1153
30	Kalm	an Filter		1154
	30.1	Uncorrelated Observations		1154
	30.2	Innovations Process		1157
	30.3	State-Space Model		1159
	30.4	Measurement- and Time-Update Forms		1171
	30.5	Steady-State Filter		1177
	30.6	Smoothing Filters		1181
	30.7	Ensemble Kalman Filter		1185
	30.8	Nonlinear Filtering		1191
	30.9	Commentaries and Discussion		1201
		Problems		1204
		References		1208
31	Maxi	mum Likelihood		1211
	31.1	Problem Formulation		1211
	31.2	Gaussian Distribution		1214
	31.3	Multinomial Distribution		1223
	31.4	Exponential Family of Distributions		1226
	31.5	Cramer–Rao Lower Bound		1229
	31.6	Model Selection		1237
	31.7	Commentaries and Discussion		1251
		Problems		1259
		Derivation of the Cramer–Rao Bound		1265
	31.B	Derivation of the AIC Formulation		1266
	$31.\mathrm{C}$	Derivation of the BIC Formulation		1271
		References		1273

xvi	Cont	ents	
32	-	ctation Maximization	1276
	32.1	Motivation	1276
	32.2	Derivation of the EM Algorithm	1282
		Gaussian Mixture Models	1287
		Bernoulli Mixture Models	1302
	32.5	Commentaries and Discussion	1308
	20.4	Problems	1310
	32.A	Exponential Mixture Models <i>References</i>	1312 1316
33	Pred	ictive Modeling	1319
	33.1	Posterior Distributions	1320
	33.2	Laplace Method	1328
	33.3	Markov Chain Monte Carlo Method	1333
	33.4	Commentaries and Discussion	1346
		Problems	1348
		References	1349
34	-	ectation Propagation	1352
	34.1	Factored Representation	1352
	34.2	Gaussian Sites	1357
	34.3	Exponential Sites	1371
	34.4	Assumed Density Filtering	1375
	34.5	Commentaries and Discussion	1378
		Problems References	$1378 \\ 1379$
35	Parti	cle Filters	1380
	35.1	Data Model	1380
	35.2	Importance Sampling	1385
	35.3	Particle Filter Implementations	1393
	35.4	Commentaries and Discussion	1400
		Problems	1401
		References	1403
36	Varia	ational Inference	1405
	36.1	Evaluating Evidences	1405
	36.2	Evaluating Posterior Distributions	1411
	36.3	Mean-Field Approximation	1413
	36.4	Exponential Conjugate Models	1440
	36.5	Maximizing the ELBO	1454
	36.6	Stochastic Gradient Solution	1458
	36.7	Black Box Inference	1461
	36.8	Commentaries and Discussion	1467

			Contents	xvii
		Problems		1467
		References		1470
37		nt Dirichlet Allocation		1472
	37.1	Generative Model		1473
	37.2	Coordinate-Ascent Solution		1482
	37.3	Maximizing the ELBO		1493
	37.4	Estimating Model Parameters		1500
	37.5	Commentaries and Discussion		1514
		Problems		1515
		References		1515
38	Hidd	en Markov Models		1517
	38.1	Gaussian Mixture Models		1517
	38.2	Markov Chains		1522
	38.3	Forward–Backward Recursions		1538
	38.4	Validation and Prediction Tasks		1547
	38.5	Commentaries and Discussion		1551
		Problems		1557
		References		1560
39	Deco	oding Hidden Markov Models		1563
	39.1	Decoding States		1563
	39.2	Decoding Transition Probabilities		1565
	39.3	Normalization and Scaling		1569
	39.4	Viterbi Algorithm		1574
	39.5	EM Algorithm for Dependent Observations		1586
	39.6	Commentaries and Discussion		1604
		Problems		1605
		References		1607
40	Indep	pendent Component Analysis		1609
	40.1	Problem Formulation		1610
	40.2	Maximum-Likelihood Formulation		1617
	40.3	Mutual Information Formulation		1622
	40.4	Maximum Kurtosis Formulation		1627
	40.5	Projection Pursuit		1634
	40.6	Commentaries and Discussion		1637
		Problems		1638
		References		1640
41	Baye	sian Networks		1643
	41.1	Curse of Dimensionality		1644
	41.2	Probabilistic Graphical Models		1647

xviii	Cont	ents	
	41.3	Active and Blocked Pathways	1661
	41.4	I I I I I I I I I I I I I I I I I I I	1670
	41.5	Commentaries and Discussion	1677
		Problems	1679
		References	1680
42	Infer	ence over Graphs	1682
	42.1	Probabilistic Inference	1682
	42.2	Inference by Enumeration	1685
	42.3	Inference by Variable Elimination	1691
	42.4	Chow–Liu Algorithm	1698
	42.5	Graphical LASSO	1705
	42.6	Learning Graph Parameters	1711
	42.7	Commentaries and Discussion	1733
		Problems	1735
		References	1737
43	Undi	rected Graphs	1740
	43.1	Cliques and Potentials	1740
	43.2	Representation Theorem	1752
	43.3	Factor Graphs	1756
	43.4	Message-Passing Algorithms	1761
	43.5	Commentaries and Discussion	1793
		Problems	1796
	43.A	Proof of the Hammersley–Clifford Theorem	1799
	43.B	Equivalence of Markovian Properties	1803
		References	1804
44	Mark	xov Decision Processes	1807
	44.1	MDP Model	1807
	44.2	Discounted Rewards	1821
	44.3	Policy Evaluation	1825
	44.4	Linear Function Approximation	1840
	44.5	Commentaries and Discussion	1848
		Problems	1850
		References	1851
45	Value	e and Policy Iterations	1853
	45.1	Value Iteration	1853
	45.2	Policy Iteration	1866
	45.3	Partially Observable MDP	1879
	45.4	Commentaries and Discussion	1893
		Problems	1900
	45.A	Optimal Policy and State–Action Values	1903

			Contents	xix
	45.B	Convergence of Value Iteration		1905
		Proof of ϵ -Optimality		1906
		Convergence of Policy Iteration		1907
		Piecewise Linear Property		1909
	$45.\mathrm{F}$	Bellman Principle of Optimality References		$\begin{array}{c} 1910 \\ 1914 \end{array}$
	_			
46	-	oral Difference Learning		1917
	46.1	Model-Based Learning		1918
	46.2	Monte Carlo Policy Evaluation		1920
	46.3	TD(0) Algorithm		1928
		Look-Ahead TD Algorithm		1936
	46.5	$TD(\lambda)$ Algorithm		1940
	46.6	True Online $TD(\lambda)$ Algorithm		1949
	46.7	Off-Policy Learning		1952
	46.8	Commentaries and Discussion		1957
		Problems		1958
		Useful Convergence Result		1959
		Convergence of $TD(0)$ Algorithm		1960
		Convergence of $TD(\lambda)$ Algorithm		1963
	46.D	Equivalence of Offline Implementations References		$1967 \\ 1969$
47		-		
47	-	arning		1971
	47.1	SARSA(0) Algorithm		1971
	47.2	Look-Ahead SARSA Algorithm		1975
	47.3	$SARSA(\lambda)$ Algorithm		1977
	47.4	Off-Policy Learning		1979
	47.5	Optimal Policy Extraction		1980
	47.6	Q-Learning Algorithm		1982
	47.7	Exploration versus Exploitation		1985
	47.8	Q-Learning with Replay Buffer		1993
	47.9	Double Q-Learning		1994
	47.10	Commentaries and Discussion		1996
		Problems		1999
		Convergence of $SARSA(0)$ Algorithm		2001
	47.B	Convergence of <i>Q</i> -Learning Algorithm <i>References</i>		$2003 \\ 2005$
48	Valua	Function Approximation		2008
	48.1	Stochastic Gradient TD-Learning		2008
	$48.1 \\ 48.2$	Least-Squares TD-Learning		2008
	48.2 48.3	Projected Bellman Learning		2018
	$48.3 \\ 48.4$	SARSA Methods		2019
	40.4	SANSA METHOUS		2020

xx	Contents		
	48.5 Deep <i>Q</i> -Learning	2032	
	48.6 Commentaries and Discussion	2041	
	Problems	2043	
	References	2045	
49	Policy Gradient Methods	2047	
	49.1 Policy Model	2047	
	49.2 Finite-Difference Method	2048	
	49.3 Score Function	2050	
	49.4 Objective Functions	2052	
	49.5 Policy Gradient Theorem	2057	
	49.6 Actor–Critic Algorithms	2059	
	49.7 Natural Gradient Policy	2071	
	49.8 Trust Region Policy Optimization	2074	
	49.9 Deep Reinforcement Learning	2093	
	49.10 Soft Learning	2098	
	49.11 Commentaries and Discussion	2106	
	Problems	2109	
	49.A Proof of Policy Gradient Theorem	2113	
	49.B Proof of Consistency Theorem References	2117 2118	
	Inferences	2110	
	Author Index	2121	
	Subject Index	2145	
	VOLUME III LEARNING		
	Preface	xxvii	
	P.1 Emphasis on Foundations	xxvii	
	P.2 Glimpse of History	xxix	
	P.3 Organization of the Text	xxxi	
	P.4 How to Use the Text	xxxiv	
	P.5 Simulation Datasets	xxxvi	
	P.6 Acknowledgments	x	
	Notation	xlv	
50	Least-Squares Problems	2165	
	50.1 Motivation	2165	
	50.2 Normal Equations	2170	
	50.3 Recursive Least-Squares	2187	
	50.4 Implicit Bias	2195	
	50.5 Commentaries and Discussion	2197	
	Problems	2202	
	50.A Minimum-Norm Solution	2210	

			Contents	xxi
	$50.\mathrm{C}$	Extended Least-Squares		2212
		References		2217
51	Regu	larization		2221
	51.1	Three Challenges		2222
	51.2	ℓ_2 -Regularization		2225
	51.3	ℓ_1 -Regularization		2230
	51.4	Soft Thresholding		2234
	51.5	Commentaries and Discussion		2242
		Problems		2245
	51.A	Constrained Formulations for Regularization		2250
	51.B	Expression for LASSO Solution		2253
		References		2257
52	Near	est-Neighbor Rule		2260
	52.1	Bayes Classifier		2262
	52.2	k-NN Classifier		2265
	52.3	Performance Guarantee		2268
	52.4	k-Means Algorithm		2270
	52.5	Commentaries and Discussion		2279
		Problems		2282
	52.A	Performance of the NN Classifier		2284
		References		2287
53	Self-(Organizing Maps		2290
	53.1	Grid Arrangements		2290
	53.2	Training Algorithm		2293
	53.3	Visualization		2302
	53.4	Commentaries and Discussion		2310
		Problems		2310
		References		2311
54	Decis	sion Trees		2313
	54.1	Trees and Attributes		2313
	54.2	Selecting Attributes		2317
	54.3	Constructing a Tree		2327
	54.4	Commentaries and Discussion		2335
		Problems		2337
		References		2338
55	Naïve	e Bayes Classifier		2341
	55.1	Independence Condition		2341
	55.2	Modeling the Conditional Distribution		2343
	55.3	Estimating the Priors		2344

xxii	Cont	ents	
	55.4	Gaussian Naïve Classifier	2351
	55.5	Commentaries and Discussion	2352
		Problems	2354
		References	2356
56	Linear Discriminant Analysis		2357
	56.1	Discriminant Functions	2357
	56.2	Linear Discriminant Algorithm	2360
	56.3	Minimum Distance Classifier	2362
	56.4	2	2365
	56.5	Commentaries and Discussion	2378
		Problems	2379
		References	2381
57	Princ	cipal Component Analysis	2383
	57.1	Data Preprocessing	2383
	57.2	Dimensionality Reduction	2385
	57.3	1 1	2396
	57.4	1	2399
	57.5	Probabilistic PCA	2404
	57.6	Commentaries and Discussion	2411
		Problems	2414
		Maximum Likelihood Solution	2417
	57.B	Alternative Optimization Problem References	2421 2422
58		onary Learning	2424
	58.1	Learning Under Regularization	2425
	58.2	Learning Under Constraints	2430
	58.3	K-SVD Approach	2432
	58.4	Nonnegative Matrix Factorization	2435
	58.5	Commentaries and Discussion	2443
		Problems	2446
	$58.\mathrm{A}$	Orthogonal Matching Pursuit References	$2448 \\ 2454$
		Rejerences	2404
59	-	stic Regression	2457
	59.1	Logistic Model	2457
	59.2	Logistic Empirical Risk	2459
	59.3	Multiclass Classification	2464
	59.4	0	2471
	59.5	Domain Adaptation	2476
	59.6	Commentaries and Discussion	2484
		Problems	2488

			Contents	xxiii
	59.A	Generalized Linear Models		2492
		References		2496
60	Perce	ptron		2499
	60.1	Linear Separability		2499
	60.2	Perceptron Empirical Risk		2501
	60.3	Termination in Finite Steps		2507
	60.4	Pocket Perceptron		2509
	60.5	Commentaries and Discussion		2513
		Problems		2517
	60.A	Counting Theorem		2520
	$60.\mathrm{B}$	Boolean Functions		2526
		References		2528
61	Supp	ort Vector Machines		2530
	61.1	SVM Empirical Risk		2530
	61.2	Convex Quadratic Program		2541
	61.3	Cross Validation		2546
	61.4	Commentaries and Discussion		2551
		Problems		2553
		References		2554
62	Bagg	ing and Boosting		2557
	62.1	Bagging Classifiers		2557
	62.2	AdaBoost Classifier		2561
	62.3	Gradient Boosting		2572
	62.4	Commentaries and Discussion		2580
		Problems		2581
		References		2584
63	Kerne	el Methods		2587
	63.1	Motivation		2587
	63.2	Nonlinear Mappings		2590
	63.3	Polynomial and Gaussian Kernels		2592
	63.4	Kernel-Based Perceptron		2595
	63.5	Kernel-Based SVM		2604
	63.6	Kernel-Based Ridge Regression		2610
	63.7	Kernel-Based Learning		2613
	63.8	Kernel PCA		2618
	63.9	Inference under Gaussian Processes		2623
		Commentaries and Discussion		2634
	-	Problems		2640
		References		2646
		J		

xxiv	Conte	ents	
	-		
64		ralization Theory	2650
	64.1	Curse of Dimensionality	2650
	64.2	Empirical Risk Minimization	2654 2657
	64.3	Generalization Ability	2657
	64.4	VC Dimension	2662
	64.5	Bias–Variance Trade-off	2663
	64.6	Surrogate Risk Functions	2667
	64.7	Commentaries and Discussion Problems	2672
	64 A		2679
		VC Dimension for Linear Classifiers	2686
		Sauer Lemma	2688
		Vapnik–Chervonenkis Bound	$2694 \\ 2701$
	04.D	Rademacher Complexity	2701 2711
		References	2711
65		forward Neural Networks	2715
	65.1	Activation Functions	2716
	65.2	Feedforward Networks	2721
	65.3	Regression and Classification	2728
	65.4		2731
	65.5	Backpropagation Algorithm	2739
	65.6	Dropout Strategy	2750
	65.7	Regularized Cross-Entropy Risk	2754
	65.8	Slowdown in Learning	2768
	65.9	Batch Normalization	2769
	65.10	Commentaries and Discussion	2776
		Problems	2781
	$65.\mathrm{A}$	Derivation of Batch Normalization Algorithm	2787
		References	2792
66	Deep	Belief Networks	2797
	66.1	Pre-Training Using Stacked Autoencoders	2797
	66.2	Restricted Boltzmann Machines	2802
	66.3	Contrastive Divergence	2809
	66.4	Pre-Training using Stacked RBMs	2820
	66.5	Deep Generative Model	2823
	66.6	Commentaries and Discussion	2830
		Problems	2834
		References	2836
67	Conv	olutional Networks	2838
	67.1	Correlation Layers	2839
	67.2	Pooling	2860
	67.3	Full Network	2869

			Contents	xxv
	67.4	Training Algorithm		2876
	67.5	Commentaries and Discussion		2885
		Problems		2887
	67.A	Derivation of Training Algorithm		2888
		References		2903
68	Gene	rative Networks		2905
	68.1	Variational Autoencoders		2905
	68.2	Training Variational Autoencoders		2913
	68.3	Conditional Variational Autoencoders		2930
	68.4	Generative Adversarial Networks		2935
	68.5	Training of GANs		2943
	68.6	Conditional GANs		2956
	68.7	Commentaries and Discussion		2960
		Problems		2963
		References		2964
69	Recu	rrent Networks		2967
	69.1	Recurrent Neural Networks		2967
	69.2	Backpropagation Through Time		2973
	69.3	Bidirectional Recurrent Networks		2995
	69.4	Vanishing and Exploding Gradients		3002
	69.5	Long Short-Term Memory Networks		3004
	69.6	Bidirectional LSTMs		3026
	69.7	Gated Recurrent Units		3034
	69.8	Commentaries and Discussion		3036
		Problems		3037
		References		3040
70	Expla	inable Learning		3042
	70.1	Classifier Model		3042
	70.2	Sensitivity Analysis		3046
	70.3	Gradient X Input Analysis		3049
	70.4	Relevance Analysis		3050
	70.5	Commentaries and Discussion		3060
		Problems		3061
		References		3062
71	Adve	rsarial Attacks		3065
	71.1	Types of Attacks		3066
	71.2	Fast Gradient Sign Method		3070
	71.3	Jacobian Saliency Map Approach		3075
	71.4	DeepFool Technique		3078
	71.5	Black-Box Attacks		3088

xxvi	Contents				
	71.6	Defense Mechanisms	3091		
	71.7	Commentaries and Discussion	3093		
		Problems	3095		
		References	3096		
72	Meta	a Learning	3099		
	72.1	Network Model	3099		
	72.2	Siamese Networks	3101		
	72.3	Relation Networks	3112		
	72.4	Exploration Models	3118		
	72.5	Commentaries and Discussion	3136		
		Problems	3136		
	72.A	Matching Networks	3138		
	72.B	Prototypical Networks	3144		
		References	3146		
	Auth	oor Index	3149		
	Subje	ect Index	3173		

Preface

Learning directly from data is critical to a host of disciplines in engineering and the physical, social, and life sciences. Modern society is literally driven by an interconnected web of data exchanges at rates unseen before, and it relies heavily on decisions inferred from patterns in data. There is nothing fundamentally wrong with this approach, except that the inference and learning methodologies need to be anchored on solid foundations, be fair and reliable in their conclusions, and be robust to unwarranted imperfections and malicious interference.

P.1 EMPHASIS ON FOUNDATIONS

Given the explosive interest in data-driven learning methods, it is not uncommon to encounter claims of superior designs in the literature that are substantiated mainly by sporadic simulations and the potential for "life-changing" applications rather than by an approach that is founded on the well-tested scientific principle to inquiry. For this reason, one of the main objectives of this text is to highlight, in a unified and formal manner, the firm mathematical and statistical pillars that underlie many popular data-driven learning and inference methods. This is a nontrivial task given the wide scope of techniques that exist, and which have often been motivated independently of each other. It is nevertheless important for practitioners and researchers alike to remain cognizant of the common foundational threads that run across these methods. It is also imperative that progress in the domain remains grounded on firm theory. As the aphorism often attributed to Lewin (1945) states, "there is nothing more practical than a good theory." According to Bedeian (2016), this saying has an even older history.

Rigorous data analysis, and conclusions derived from experimentation and theory, have been driving science since time immemorial. As reported by Heath (1912), the Greek scientist Archimedes of Syracuse devised the now famous Archimedes' Principle about the volume displaced by an immersed object from observing how the level of water in a tub rose when he sat in it. In the account by Hall (1970), Gauss' formulation of the least-squares problem was driven by his desire to predict the future location of the planetoid Ceres from observations of its location over 41 prior days. There are numerous similar examples by notable scientists where experimentation led to hypotheses and from there

xxviii Preface

to substantiated theories and well-founded design methodologies. Science is also full of progress in the reverse direction, where theories have been developed first to be validated only decades later through experimentation and data analysis. Einstein (1916) postulated the existence of gravitational waves over 100 years ago. It took until 2016 to detect them! Regardless of which direction one follows, experimentation to theory or the reverse, the match between solid theory and rigorous data analysis has enabled science and humanity to march confidently toward the immense progress that permeates our modern world today.

For similar reasons, data-driven learning and inference should be developed with strong theoretical guarantees. Otherwise, the confidence in their reliability can be shaken if there is over-reliance on "proof by simulation or experience." Whenever possible, we explain the underlying models and statistical theories for a large number of methods covered in this text. A good grasp of these theories will enable practitioners and researchers to devise variations with greater mastery. We weave through the foundations in a coherent and cohesive manner, and show how the various methods blend together techniques that may appear decoupled but are actually facets of the same common methodology. In this process, we discover that a good number of techniques are well-grounded and meet proven performance guarantees, while other methods are driven by ingenious insights but lack solid justifications and cannot be guaranteed to be "fail-proof."

Researchers on learning and inference methods are of course aware of the limitations of some of their approaches, so much so that we encounter today many studies, for example, on the topic of "explainable machine learning." The objective here is to understand why learning algorithms produce certain recommendations. While this is an important area of inquiry, it nevertheless highlights one interesting shift in paradigm. In the past, the emphasis would have been on designing inference methods that respond to the input data in certain desirable and controllable ways. Today, in many instances, the emphasis is to stick to the available algorithms (often, out of convenience) and try to understand or explain why they are responding in certain ways to the input!

Writing this text has been a rewarding journey that took me from the early days of statistical mathematical theory to the modern state of affairs in learning theory. One can only stand in awe at the wondrous ideas that have been introduced by notable researchers along this trajectory. At the same time, one observes with some concern an emerging trend in recent years where solid foundations receive less attention in lieu of "speed publishing" and over-reliance on "illustration by simulation." This is of course not the norm and most researchers in the field stay honest to the scientific approach to inquiry and design. After concluding this comprehensive text, I stand humbled at the realization of "how little we know!" There are countless questions that remain open, and even for many of the questions that have been answered, their answers rely on assumptions or (over)simplifications. It is understandable that the complexity of the problems we face today has increased manifold, and ingenious approximations become necessary to enable tractable solutions.

P.2 Glimpse of History

xxix

P.2 GLIMPSE OF HISTORY

Reading through the text, the alert reader will quickly realize that the core foundations of modern-day machine learning, data analytics, and inference methods date back for at least two centuries, with contributions arising from a range of fields including mathematics, statistics, optimization theory, information theory, signal processing, communications, control, and computer science. For the benefit of the reader, I reproduce here with permission from IEEE some historical remarks from the editorial I published in Sayed (2018). I explained there that these disciplines have generated a string of "big ideas" that are driving today multi-faceted efforts in the age of "big data" and machine learning. Generations of students in the statistical sciences and engineering have been trained in the art of modeling, problem solving, and optimization. Their algorithms power everything from cell phones, to spacecraft, robotic explorers, imaging devices, automated systems, computing machines, and also recommender systems. These students mastered the foundations of their fields and have been well prepared to contribute to the explosive growth of data analysis and machine learning solutions.

As the list below shows, many well-known engineering and statistical methods have actually been motivated by data-driven inquiries, even from times remote. The list is a tour of some older historical contributions, which is of course biased by my personal preferences and is not intended to be exhaustive. It is only meant to illustrate how concepts from statistics and the information sciences have always been at the center of promoting big ideas for data and machine learning. Readers will encounter these concepts in various chapters in the text. Readers will also encounter additional historical accounts in the concluding remarks of each chapter, and in particular comments on newer contributions and contributors.

Let me start with Gauss himself, who in 1795 at the young age of 18, was fitting lines and hyperplanes to astronomical data and invented the least-squares criterion for regression analysis – see the collection of his works in Gauss (1903). He even devised the recursive least-squares solution to address what was a "big" data problem for him at the time: He had to avoid tedious repeated calculations by hand as more observational data became available. What a wonderful big idea for a data-driven problem! Of course, Gauss had many other big ideas.

de Moivre (1730), Laplace (1812), and Lyapunov (1901) worked on the central limit theorem. The theorem deals with the limiting distribution of averages of "large" amounts of data. The result is also related to the law of "large" numbers, which even has the qualification "large" in its name. Again, big ideas motivated by "large" data problems.

Bayes (ca mid-1750s) and Laplace (1774) appear to have independently discovered the Bayes rule, which updates probabilities conditioned on observations – see the article by Bayes and Price (1763). The rule forms the backbone of much of statistical signal analysis, Bayes classifiers, Naïve classifiers, and Bayesian networks. Again, a big idea for data-driven inference.

Preface

XXX

Fourier (1822), whose tools are at the core of disciplines in the information sciences, developed the phenomenal Fourier representation for signals. It is meant to transform data from one domain to another to facilitate the extraction and visualization of information. A big transformative idea for data.

Forward to modern times. The fast Fourier transform (FFT) is another example of an algorithm driven by challenges posed by data size. Its modern version is due to Cooley and Tukey (1965). Their algorithm revolutionized the field of discrete-time signal processing, and FFT processors have become common components in many modern electronic devices. Even Gauss had a role to play here, having proposed an early version of the algorithm some 160 years before, again motivated by a data-driven problem while trying to fit astronomical data onto trigonometric polynomials. A big idea for a data-driven problem.

Closer to the core of statistical mathematical theory, both Kolmogorov (1939) and Wiener (1949) laid out the foundations of modern statistical signal analysis and optimal prediction methods. Their theories taught us how to extract information optimally from data, leading to further refinements by Wiener's student Levinson (1947) and more dramatically by Kalman (1960). The innovations approach by Kailath (1968) exploited to great effect the concept of orthogonalization of the data and recursive constructions. The Kalman filter is applied across many domains today, including in financial analysis from market data. Kalman's work was an outgrowth of the model-based approach to system theory advanced by Zadeh (1954). The concept of a recursive solution from streaming data was a novelty in Kalman's filter; the same concept is commonplace today in most online learning techniques. Again, big ideas for recursive inference from data.

Cauchy (1847) early on, and Robbins and Monro (1951) a century later, developed the powerful gradient-descent method for root finding, which is also recursive in nature. Their techniques have grown to motivate huge advances in stochastic approximation theory. Notable contributions that followed include the work by Rosenblatt (1957) on the perceptron algorithm for single-layer networks, and the impactful delta rule by Widrow and Hoff (1960), widely known as the LMS algorithm in the signal processing literature. Subsequent work on multilayer neural networks grew out of the desire to increase the approximation power of single-layer networks, culminating with the backpropagation method of Werbos (1974). Many of these techniques form the backbone of modern learning algorithms. Again, big ideas for recursive online learning.

Shannon (1948a, b) contributed fundamental insights to data representation, sampling, coding, and communications. His concepts of entropy and information measure helped quantify the amount of uncertainty in data and are used, among other areas, in the design of decision trees for classification purposes and in driving learning algorithms for neural networks. Nyquist (1928) contributed to the understanding of data representations as well. Big ideas for data sampling and data manipulation.

Bellman (1957a, b), a towering system-theorist, introduced dynamic programming and the notion of the curse of dimensionality, both of which are core

Cambridge University Press & Assessment 978-1-009-21812-2 — Inference and Learning from Data Volume 1 Frontmatter More Information

P.3 Organization of the Text

xxxi

underpinnings of many results in learning theory, reinforcement learning, and the theory of Markov decision processes. Viterbi's algorithm (1967) is one notable example of a dynamic programming solution, which has revolutionized communications and has also found applications in hidden Markov models widely used in speech recognition nowadays. Big ideas for conquering complex data problems by dividing them into simpler problems.

Kernel methods, building on foundational results by Mercer (1909) and Aronszajn (1950), have found widespread applications in learning theory since the mid-1960s with the introduction of the kernel perceptron algorithm. They have also been widely used in estimation theory by Parzen (1962), Kailath (1971), and others. Again, a big idea for learning from data.

Pearson and Fisher launched the modern field of mathematical statistical signal analysis with the introduction of methods such as principal component analysis (PCA) by Pearson (1901) and maximum likelihood and linear discriminant analysis by Fisher (1912, 1922, 1925). These methods are at the core of statistical signal processing. Pearson (1894, 1896) also had one of the earliest studies of fitting a mixture of Gaussian models to biological data. Mixture models have now become an important tool in modern learning algorithms. Big ideas for data-driven inference.

Markov (1913) introduced the formalism of Markov chains, which is widely used today as a powerful modeling tool in a variety of fields including word and speech recognition, handwriting recognition, natural language processing, spam filtering, gene analysis, and web search. Markov chains are also used in Google's PageRank algorithm. Markov's motivation was to study letter patterns in texts. He laboriously went through the first 20,000 letters of a classical Russian novel and counted pairs of vowels, consonants, vowels followed by a consonant, and consonants followed by a vowel. A "big" data problem for his time. Great ideas (and great patience) for data-driven inquiries.

And the list goes on, with many modern-day and ongoing contributions by statisticians, engineers, and computer scientists to network science, distributed processing, compressed sensing, randomized algorithms, optimization, multi-agent systems, intelligent systems, computational imaging, speech processing, forensics, computer visions, privacy and security, and so forth. We provide additional historical accounts about these contributions and contributors at the end of the chapters.

P.3 ORGANIZATION OF THE TEXT

The text is organized into three volumes, with a sizable number of problems and solved examples. The table of contents provides details on what is covered in each volume. Here we provide a condensed summary listing the three main themes:

xxxii Preface

- 1. (Volume I: Foundations). The first volume covers the *foundations* needed for a solid grasp of inference and learning methods. Many important topics are covered in this part, in a manner that prepares readers for the study of inference and learning methods in the second and third volumes. Topics include: matrix theory, linear algebra, random variables, Gaussian and exponential distributions, entropy and divergence, Lipschitz conditions, convexity, convex optimization, proximal operators, gradient-descent, mirror-descent, conjugate-gradient, subgradient methods, stochastic optimization, adaptive gradient methods, variance-reduced methods, distributed optimization, and nonconvex optimization. Interestingly enough, the following concepts occur time and again in all three volumes and the reader is well-advised to develop familiarity with them: convexity, sample mean and law of large numbers, Gaussianity, Bayes rule, entropy, Kullback–Leibler divergence, gradientdescent, least squares, regularization, and maximum-likelihood. The last three concepts are discussed in the initial chapters of the second volume.
- 2. (Volume II: Inference). The second volume covers inference methods. By "inference" we mean techniques that infer some unknown variable or quantity from observations. The difference we make between "inference" and "learning" in our treatment is that inference methods will target situations where some prior information is known about the underlying signal models or signal distributions (such as their joint probability density functions or generative models). The performance by many of these inference methods will be the ultimate goal that learning algorithms, studied in the third volume, will attempt to emulate. Topics covered here include: mean-square-error inference, Bayesian inference, maximum-likelihood estimation, expectation maximization, expectation propagation, Kalman filters, particle filters, posterior modeling and prediction, Markov chain Monte Carlo methods, sampling methods, variational inference, latent Dirichlet allocation, hidden Markov models, independent component analysis, Bayesian networks, inference over directed and undirected graphs, Markov decision processes, dynamic programming, and reinforcement learning.
- 3. (Volume III: Learning). The third volume covers learning methods. Here, again, we are interested in inferring some unknown variable or quantity from observations. The difference, however, is that the inference will now be solely data-driven, i.e., based on available data and not on any assumed knowledge about signal distributions or models. The designer is only given a collection of observations that arise from the underlying (unknown) distribution. New phenomena arise related to generalization power, overfitting, and underfitting depending on how representative the data is and how complex or simple the approximate models are. The target is to use the data to learn about the quantity of interest (its value or evolution). Topics covered here include: least-squares methods, regularization, nearest-neighbor rule, self-organizing maps, decision trees, naïve Bayes classifier, linear discrimi-