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1 Matrix Theory

We collect in this chapter useful background material on matrix theory and

linear algebra. The emphasis is on results that are needed for future develop-

ments. Among other concepts, we review symmetric and nonnegative-definite

matrices, range spaces and nullspaces, as well as several matrix decompositions,

including the spectral decomposition, the triangular decomposition, the QR de-

composition, and the singular value decomposition (SVD). We also discuss vec-

tor and matrix norms, Kronecker products, Schur complements, and the useful

Rayleigh–Ritz characterization of the eigenvalues of symmetric matrices.

1.1 SYMMETRIC MATRICES

Symmetric and nonnegative-definite matrices play a prominent role in data anal-

ysis. We review some of their properties in this section. Thus, consider an arbi-

trary square matrix of size N ×N with real entries, written as A ∈ IRN×N . The

transpose of A is denoted by AT and is obtained by transforming the rows of A

into columns of AT. For example,

A =





1 −1 3

−2 4 5

0 6 8



 =⇒ AT =





1 −2 0

−1 4 6

3 5 8



 (1.1)

The matrix A is said to be symmetric if it happens to coincide with its matrix

transpose, i.e., if it satisfies

A = AT (symmetry) (1.2)

Real eigenvalues
A useful property of symmetric matrices is that they can only have real eigen-

values. To see this, let u represent a column eigenvector of A corresponding to

some eigenvalue λ, i.e., u is nonzero and satisfies along with λ the relation:

Au = λu (1.3)

The eigenvector u may be complex-valued so that, in general, u ∈ CN . Let the

symbol ∗ denote the operation of complex conjugate transposition, so that u∗

www.cambridge.org/9781009218122
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-21812-2 — Inference and Learning from Data
Volume 1
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Matrix Theory

is the row vector that is obtained by transposing u and replacing its entries by

their complex conjugate values, e.g.,

u
∆
=





1 + j

2

−2 + 3j



 =⇒ u∗ =
[
1− j 2 −2− 3j

]
(1.4)

where j
∆
=

√
−1. The same complex conjugation operation can be applied to

matrices as well so that, e.g.,

B =

[
1 j −2 + j

3− j 1− 2j 0

]

=⇒ B∗ =





1 3 + j

−j 1 + 2j

−2− j 0



 (1.5)

Returning to (1.3) and multiplying from the left by the row vector u∗ we get

u∗Au = λu∗u = λ‖u‖2 (1.6)

where the notation ‖ ·‖ denotes the Euclidean norm of its vector argument. Note

that the quantity u∗Au is a scalar. Moreover, it is real-valued because it coincides

with its complex conjugate value:

(u∗Au)
∗

= u∗A∗(u∗)∗ = u∗Au (1.7)

where in the last step we used the fact that A∗ = A since A is real-valued and

symmetric. Therefore, u∗Au is real and, from equality (1.6), we conclude that

λ‖u‖2 must also be real. But since ‖u‖2 is real and nonzero, we conclude that

the eigenvalue λ must be real too.

One consequence of this conclusion is that we can always find real-valued eigen-

vectors for symmetric matrices. Indeed, if we express u in terms of its real and

imaginary vector components, say, as

u = p+ jq, p, q ∈ IRN (1.8)

then, using (1.3) and the fact that λ is real, we conclude that it must hold:

Ap = λp, Aq = λq (1.9)

so that p and q are eigenvectors associated with λ.

Spectral theorem
A second important property of real symmetric matrices, one whose proof re-

quires a more elaborate argument and is deferred to Appendix 1.A, is that such

matrices always have a full set of orthonormal eigenvectors. That is, if A ∈ IRN×N

is symmetric, then there will exist a set of N orthonormal real eigenvectors

un ∈ IRN satisfying

Aun = λnun, ‖un‖2 = 1, uT

n
um = 0 for n 6= m (1.10)

where all N eigenvalues {λn, n = 1, 2, . . . , N} are real, and all eigenvectors {un}
have unit norm and are orthogonal to each other. This result is known as the
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1.1 Symmetric Matrices 3

spectral theorem. For illustration purposes, assume A is 3 × 3. Then, the above

statement asserts that there will exist three real orthonormal vectors {u1, u2, u3}
and three real eigenvalues {λ1, λ2, λ3} such that

A
[
u1 u2 u3

]

︸ ︷︷ ︸
∆
= U

=
[
u1 u2 u3

]

︸ ︷︷ ︸

U





λ1

λ2

λ3





︸ ︷︷ ︸
∆
= Λ

(1.11)

where we are introducing the matrices U and Λ for compactness of notation: U

contains real eigenvectors for A and Λ is a diagonal matrix with the corresponding

eigenvalues. Then, we can write (1.11) more compactly as

AU = UΛ (1.12)

However, the fact that the columns of U are orthogonal to each other and have

unit norms implies that U satisfies the important normalization property:

UUT = IN and UTU = IN (1.13)

That is, the product of U with UT (or UT with U) results in the identity matrix

of size N ×N – see Prob. 1.1. We say that U is an orthogonal matrix. Using this

property and multiplying the matrix equality (1.12) by UT from the right we get

AUUT

︸ ︷︷ ︸

=I

= UΛUT (1.14)

We therefore conclude that every real symmetric matrix A can be expressed in

the following spectral (or eigen-) decomposition form:

A = UΛUT (eigen-decomposition) (1.15a)

where, for general dimensions, the N×N matrices Λ and U are constructed from

the eigenvalues and orthonormal eigenvectors of A as follows:

Λ = diag{λ1, λ2, . . . , λN} (1.15b)

U =
[
u1 u2 . . . uN

]
(1.15c)

Rayleigh–Ritz ratio
There is a useful characterization of the smallest and largest eigenvalues of real

symmetric matrices, known as the Rayleigh–Ritz ratio. Specifically, if A ∈ IRN×N

is symmetric, then it holds that for all vectors x ∈ IRN :

λmin‖x‖2 ≤ xTAx ≤ λmax‖x‖2 (1.16)
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4 Matrix Theory

as well as

λmin = min
x 6=0

(
xTAx

xTx

)

= min
‖x‖=1

xTAx (1.17a)

λmax = max
x 6=0

(
xTAx

xTx

)

= max
‖x‖=1

xTAx (1.17b)

where {λmin, λmax} denote the smallest and largest eigenvalues of A. The ratio

xTAx/xTx is called the Rayleigh–Ritz ratio.

Proof of (1.16) and (1.17a)–(1.17b): Consider the eigen-decomposition (1.15a) and
introduce the vector y = UTx for any vector x. Then,

x
T
Ax = x

T
UΛUT

x = y
TΛy =

N∑

n=1

λny
2

n (1.18)

with the {yn} denoting the individual entries of y. Now since the squared terms {y2
n}

are nonnegative and the {λn} are real, we get

λmin

(
N∑

n=1

y
2

n

)

≤
N∑

n=1

λny
2

n ≤ λmax

(
N∑

n=1

y
2

n

)

(1.19)

or, equivalently,

λmin‖y‖2 ≤ x
T
Ax ≤ λmax‖y‖2 (1.20)

Using the fact that U is orthogonal and, hence,

‖y‖2 = y
T
y = xUU

T

︸ ︷︷ ︸
=I

x = ‖x‖2 (1.21)

we conclude that (1.16) holds. The lower (upper) bound in (1.19) is achieved when x

is chosen as the eigenvector umin(umax) corresponding to λmin(λmax).

�

Example 1.1 (Quadratic curve) Consider the two-dimensional function

g(r, s) = ar
2 + as

2 + 2brs, r, s ∈ IR (1.22)

We would like to determine the largest and smallest values that the function attains
on the circle r2 + s2 = 1. One way to solve the problem is to recognize that g(r, s) can
be rewritten as

g(r, s) =
[
r s

]

︸ ︷︷ ︸
∆
= xT

[
a b
b a

]

︸ ︷︷ ︸
∆
= A

[
r
s

]

︸ ︷︷ ︸
=x

= x
T
Ax (1.23)

We therefore want to determine the extreme values of the quadratic form xTAx un-
der the constraint ‖x‖ = 1. According to (1.17a)–(1.17b), these values correspond to
λmin(A) and λmax(A). It can be easily verified that the eigenvalues of A are given by
λ(A) = {a− b, a+ b} and, hence,

λmin(A) = min{a− b, a+ b}, λmax(A) = max{a− b, a+ b} (1.24)
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1.2 Positive-Definite Matrices 5

1.2 POSITIVE-DEFINITE MATRICES

An N×N real symmetric matrix A is said to be nonnegative-definite (also called

positive semi-definite) if it satisfies the property:

vTAv ≥ 0, for all column vectors v ∈ IRN (1.25)

The matrix A is said to be positive-definite if vTAv > 0 for all v 6= 0. We denote

a positive-definite matrix by writing A > 0 and a positive semi-definite matrix

by writing A ≥ 0.

Example 1.2 (Diagonal matrices) The notion of positive semi-definiteness is trivial
for diagonal matrices. Consider the diagonal matrix

A = diag{a1, a2, a3} ∈ IR3×3 (1.26)

and let

v =





v1
v2
v3



 ∈ IR3 (1.27)

denote an arbitrary vector. Then, some simple algebra shows that

v
T
Av = a1v

2

1 + a2v
2

2 + a3v
2

3 (1.28)

This expression will be nonnegative for any v if, and only if, the entries an are all
nonnegative. This is because if any an is negative, say a2, then we can select a vector
v with an entry v2 that is large enough to result in a negative term a2v

2
2 that exceeds

the contribution of the other two terms in the sum vTAv. Therefore, for a diagonal
matrix to be positive semi-definite, it is necessary and sufficient that its diagonal entries
be nonnegative. Likewise, a diagonal matrix A is positive-definite if, and only if, its
diagonal entries are positive. We cannot extrapolate and say that a general nondiagonal
matrix A is positive semi-definite if all its entries are nonnegative; this conclusion is
not true, as the next example shows.

Example 1.3 (Nondiagonal matrices) Consider the 2× 2 matrix

A =

[
3 −1

−1 3

]

(1.29)

This matrix is positive-definite. Indeed, pick any nonzero column vector v ∈ IR2. Then,

v
T
Av =

[
v1 v2

]
[

3 −1
−1 3

] [
v1
v2

]

= 3v21 + 3v22 − 2v1v2

= (v1 − v2)
2 + 2v21 + 2v22

> 0, for any v 6= 0 (1.30)
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6 Matrix Theory

Among the several equivalent characterizations of positive-definite matrices,

we note that an N ×N real symmetric matrix A is positive-definite if, and only

if, all its N eigenvalues are positive:

A > 0 ⇐⇒ {λn > 0}N
n=1 (1.31)

One proof relies on the use of the eigen-decomposition of A.

Proof of (1.31): We need to prove the statement in both directions. Assume initially
that A is positive-definite and let us establish that all its eigenvalues are positive. Let
A = UΛUT denote the spectral decomposition of A. Let also un denote the nth column
of U corresponding to the eigenvalue λn, i.e., Aun = λnun with ‖un‖2 = 1. If we
multiply this equality from the left by uT

n we get

u
T

nAun = λn‖un‖2 = λn > 0 (1.32)

where the last inequality follows from the fact that uTAu > 0 for any nonzero vector
u since A is assumed to be positive-definite. Therefore, A > 0 implies λn > 0 for
n = 1, 2, . . . , N .

Conversely, assume all λn > 0 and let us show that A > 0. Multiply the equality
A = UΛUT by any nonzero vector v and its transpose, from right and left, to get

v
T
Av = v

T
UΛUT

v (1.33)

Now introduce the real diagonal matrix

D
∆
= diag

{√
λ1,

√
λ2, . . . ,

√
λn

}

(1.34)

and the vector

s
∆
= DU

T
v (1.35)

The vector s is nonzero. This can be seen as follows. Let w = UTv. Then, the vectors
v and w have the same Euclidean norm since

‖w‖2 = w
T
w = v

T
UU

T

︸ ︷︷ ︸
=I

v = v
T
v = ‖v‖2 (1.36)

It follows that the vector w is nonzero since v is nonzero. Now since s = Dw and all
entries of D are nonzero, we conclude that s 6= 0. Returning to (1.33), we get

v
T
Av = ‖s‖2 > 0 (1.37)

for any nonzero v, which establishes that A > 0.

�

In a similar vein, we can show that

A ≥ 0 ⇐⇒ {λn ≥ 0}N
n=1 (1.38)

Example 1.4 (Positive-definite matrix) Consider again the 2 × 2 matrix from
Example 1.3:

A =

[
3 −1

−1 3

]

(1.39)

www.cambridge.org/9781009218122
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-21812-2 — Inference and Learning from Data
Volume 1
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 Range Spaces and Nullspaces 7

We established in that example from first principles that A > 0. Alternatively, we can
determine the eigenvalues of A and verify that they are positive. The eigenvalues are
the roots of the characteristic equation, det(λI −A) = 0, which leads to the quadratic
equation (λ− 3)2 − 1 = 0 so that λ1 = 4 > 0 and λ2 = 2 > 0.

A second useful property of positive-definite matrices is that they have positive

determinants. To see this, recall first that for two square matrices A and B it

holds that

det(AB) = det(A) det(B) (1.40)

That is, the determinant of the product is equal to the product of the determi-

nants. Now starting with a positive-definite matrix A, and applying the above

determinant formula to its eigen-decomposition (1.15a), we get

detA = (detU) (detΛ)
(
detUT

)
(1.41)

But UUT = I so that

(detU)
(
detUT

)
= 1 (1.42)

and we conclude that

detA = detΛ =
N∏

n=1

λn (1.43)

This result is actually general and holds for arbitrary square matrices A (the

matrices do not need to be symmetric or positive-definite): the determinant of a

matrix is always equal to the product of its eigenvalues (counting multiplicities)

– see Prob. 1.2. Now, when the matrix A happens to be positive-definite, all its

eigenvalues will be positive and, hence,

A > 0 =⇒ detA > 0 (1.44)

Note that this statement goes in one direction only; the converse is not true.

1.3 RANGE SPACES AND NULLSPACES

Let A denote an N ×M real matrix without any constraint on the relative sizes

of N and M . When N = M , we say that A is a square matrix. Otherwise, when

N > M , we say that A is a “tall” matrix and when N < M we say that A is a

“fat” matrix.
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8 Matrix Theory

Definitions
The column span or the range space of A is defined as the set of all N ×1 vectors

q that can be generated by Ap, for all M × 1 vectors p. We denote the column

span of A by

R(A)
∆
=

{

set of all q ∈ IRN such that q = Ap for some p ∈ IRM

}

(1.45)

Likewise, the nullspace of A is the set of all M × 1 vectors p that are annihilated

by A, namely, that satisfy Ap = 0. We denote the nullspace of A by

N(A)
∆
=

{

set of all p ∈ IRM such that Ap = 0
}

(1.46)

The rank of a matrix A is defined as the number of linearly independent

columns of A. It can be verified that, for any matrix A, the number of linearly

independent columns is also equal to the number of linearly independent rows –

see Prob. 1.5. It therefore holds that

rank(A) ≤ min{N,M} (1.47)

That is, the rank of a matrix never exceeds its smallest dimension. A matrix is

said to have full rank if

rank(A) = min{N,M} (1.48)

Otherwise, the matrix is said to be rank deficient.

If A is a square matrix (i.e., N = M), then rank deficiency is equivalent to a

zero determinant, detA = 0. Indeed, if A is rank deficient, then there exists a

nonzero p such that Ap = 0. This means that λ = 0 is an eigenvalue of A so that

its determinant must be zero.

Useful relations
One useful property that follows from the definition of range spaces and nullspaces

is that any vector z ∈ IRN from the nullspace of AT (not A) is orthogonal to any

vector q ∈ IRN in the range space of A, i.e.,

z ∈ N(AT), q ∈ R(A) =⇒ zTq = 0 (1.49)

Proof of (1.49): Indeed, z ∈ N(AT) implies that ATz = 0 or, equivalently, zTA = 0.
Now write q = Ap for some p. Then, zTq = zTAp = 0, as desired.

�

A second useful property is that the matrices ATA and AT have the same range

space (i.e., they span the same space). Also, A and ATA have the same nullspace,

i.e.,

R(AT) = R(ATA), N(A) = N(ATA) (1.50)
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1.3 Range Spaces and Nullspaces 9

Proof of (1.50): Consider a vector q ∈ R(ATA), i.e., q = ATAp for some p. Define r =

Ap, then q = ATr. This shows that q ∈ R(AT) and we conclude that R(ATA) ⊂ R(AT).
The proof of the converse statement requires more effort.

Consider a vector q ∈ R(AT) and let us show by contradiction that q ∈ R(ATA).
Assume, to the contrary, that q does not lie in R(ATA). This implies by (1.49) that there
exists a vector z in the nullspace of ATA that is not orthogonal to q, i.e., ATAz = 0 and
zTq 6= 0. Now, if we multiply the equality ATAz = 0 by zT from the left we obtain that
zTATAz = 0 or, equivalently, ‖Az‖2 = 0. Therefore, Az is necessarily the zero vector,
Az = 0. But from q ∈ R(AT) we have that q = ATp for some p. Then, it must hold that
zTq = zTATp = 0, which contradicts zTq 6= 0. Therefore, we must have q ∈ R(ATA)

and we conclude that R(AT) ⊂ R(ATA).

The second assertion in (1.50) is more immediate. If Ap = 0 then ATAp = 0 so
that N(A) ⊂ N(ATA). Conversely, if ATAp = 0 then pTATAp = ‖Ap‖2 = 0 and we
must have Ap = 0. That is, N(ATA) ⊂ N(A). Combining both facts we conclude that
N(A) = N(ATA).

�

Normal equations
One immediate consequence of result (1.50) is that linear systems of equations

of the following form:

ATAx = ATb (normal equations) (1.51)

are always consistent, i.e., they always have a solution x for any vector b. This

is because ATb belongs to R(AT) and, therefore, also belongs to R(ATA). This

type of linear system of equations will appear as normal equations when we

study least-squares problems later in Chapter 50 – see (50.25); the reason for

the designation “normal equations” will be explained there. We can say more

about the solution of such equations. For example, when the coefficient matrix

ATA, which is always square regardless of the column and row dimensions of the

N×M matrix A, happens to be invertible, then the normal equations (1.51) will

have a unique solution given by

x = (ATA)−1ATb (1.52)

We explain later in (1.58) that the matrix product ATA will be invertible when

the following two conditions hold: N ≥ M and A has full rank. In all other cases,

the matrix product ATA will be singular and will, therefore, have a nontrivial

nullspace. Let p be any nonzero vector in the nullspace of ATA. We know from

(1.50) that this vector also lies in the nullspace of A. Since we know that a

solution x always exists for (1.51) then, by adding any such p to x, we obtain

another solution. This is because:

ATA(x+ p) = ATAx+ATAp

= ATAx+ 0

= ATAx

= ATb (1.53)
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10 Matrix Theory

Knowing that there exist infinitely many vectors in N(ATA), e.g., any scaled

multiple of p belongs to the same nullspace, we conclude that when ATA is

singular, there will exist infinitely many solutions to the normal equations (1.51).

We therefore find that the normal equations (1.51) either have a unique solution

(when ATA is invertible) or infinitely many solutions (when ATA is singular).

We can be more explicit about the latter case and verify that, when infinitely

many solutions exist, they all differ by a vector in the nullspace of A. Indeed,

assume ATA is singular and let x1 and x2 denote two solutions to the normal

equations (1.51). Then,

ATAx1 = ATb, ATAx2 = ATb (1.54)

Subtracting these two equalities we find that

ATA(x1 − x2) = 0 (1.55)

which means that the difference x1 − x2 belongs to the nullspace of ATA or,

equivalently, to the nullspace of A in view of (1.50), namely,

x1 − x2 ∈ N(A) (1.56)

as claimed. We collect the results in the following statement for ease of reference.

Lemma 1.1. (Solution of normal equations) Consider the normal system of

equations ATAx = ATb, where A ∈ IRN×M , b ∈ IRN , and x ∈ IRM . The following

facts hold:

(a) A solution x always exists.

(b) The solution x is unique when ATA is invertible (i.e., when N ≥ M and A

has full rank). In this case, the solution is given by expression (1.52).

(c) There exist infinitely many solutions x when ATA is singular.

(d) Under (c), any two solutions x1 and x2 will differ by a vector in N(A), i.e.,

(1.56) holds.

The next result clarifies when the matrix product ATA is invertible. Note in

particular that the matrix ATA is symmetric and nonnegative-definite; the latter

property is because, for any nonzero x, it holds that

xTATAx = ‖Ax‖2 ≥ 0 (1.57)

Thus, let A be N ×M , with N ≥ M (i.e., A is a “tall” or square matrix). Then,

A has full rank ⇐⇒ ATA is positive-definite (1.58)

That is, every tall full rank matrix is such that the square matrix ATA is invert-

ible (actually, positive-definite).

Proof of (1.58): Assume first that A has full rank. This means that all columns of
A are linearly independent, which in turn means that Ax 6= 0 for any nonzero x.
Consequently, it holds that ‖Ax‖2 > 0, which is equivalent to xTATAx > 0 for any
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