Cosmology

Advances in science have greatly changed our ideas on the nature of the universe. *Cosmology: The Science of the Universe* is a broad and elementary introduction to cosmology that includes aspects of its history, theology, and philosophy. The book explores the realm of receding galaxies, the fascinating properties of space and time, the bizarre world of black holes, the astonishing expansion of the universe, the elegant simplicity of cosmic redshifts, and the momentous issues of inflation. Its subjects cover modern views on the origin of atoms, galaxies, life, and the universe itself; they range from the subatomic to the extragalactic, from the beginning to the end of time, and from terrestrial to extraterrestrial life. Old problems (e.g., the cosmic-edge) are revived and new perplexities (e.g., the containment riddle) are reviewed. In this unique book, Professor Harrison shows how in every age societies devise universes that make sense of the human experience. He explores the cosmic scenery of the Babylonian, Pythagorean, Aristotelian, Stoic, Epicurean, Medieval, Cartesian, and Newtonian world systems and shows how these and other systems laid the foundations of the modern physical universe.

The first edition of this best-selling book received world-wide acclaim for its far ranging treatment and clarity of explanation. This eagerly awaited second edition updates and extends the first edition. The additional chapters discuss *Early Scientific Cosmology, Cartesian and Newtonian World Systems, Cosmology After Newton and Before Einstein, Observational Cosmology, Inflation,* and *Creation of the Universe.*

EDWARD HARRISON, distinguished university professor emeritus of physics and astronomy at the University of Massachusetts, was born in London at the end of World War I. He studied at London University and served for several years in action with the British Army in World War II. He was a scientist at the Atomic Energy Research Establishment and the Rutherford High Energy Laboratory in England until 1966 when he became a Five College professor at the University of Massachusetts and taught at Amherst, Hampshire, Mount Holyoke, and Smith Colleges. Professor Harrison is author of *The Masks of the Universe* (which gained the Melcher Award), *Darkness at Night: A Riddle of the Universe*, and numerous scientific articles that have contributed to the advance of modern cosmology. He has also written many articles on the history and philosophy of early cosmology. He is married to Photeni, has two children, John-Peter and June Zöe, and is now adjunct professor at the Steward Observatory, University of Arizona.

Cosmology

THE SCIENCE OF THE UNIVERSE

SECOND EDITION

EDWARD HARRISON Five College Astronomy Department, University of Massachusetts Steward Observatory, University of Arizona

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India 103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009215701

© Cambridge University Press 1981, 2000

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1981 Reprinted 1985, 1986, 1988, 1989, 1991 Second edition 2000 8th printing 2013 First paperback edition 2022

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Harrison, Edward Robert.
Cosmology: the science of the universe / Edward R. Harrison. —
2nd ed.
p. cm.
Includes bibliographical references and index.
ISBN 0 521 66148 X
1. Cosmology. I. Title. II. Title: Cosmology, the science of the universe.
QB981.H276 1999
523.1–dc21 99-10172 CIP
ISBN 978-0-521-66148-5 Hardback

ISBN 978-1-009-21570-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CONTENTS

Preface	ix	3	Cartesian and Newtonian world	
Introduction	1		systems	4

PART I

1 What is cosmology?
The Universe
Cosmology
The magic universe
The mythic universe
The anthropometric universe
Cosmology and society
Reflections
Projects
Further reading
Sources

2 Early scientific cosmology

The beginning of western science Plato's universe Three cosmic systems of the ancient world The Aristotelian universe The Epicurean universe The Stoic universe The mystery religions The medieval universe The heliocentric universe The infinite universe Reflections Projects Further reading Sources

IA	5 Cartesian and rewtoman world	
1	systems	49
	The decline of Aristotelian science	49
	The Cartesian world system	51
	The Newtonian world system	54
	Newton and the infinite universe	60
	The atomic theory	61
13	Reflections	61
13	Projects	63
15	Further reading	64
17	Sources	64
17		
19	4 Cosmology often Newton and	
20	4 Cosmology after Newton and before Einstein	66
21	Uiorarchical universas	66
25	The nebule hypothesis	70
26	Cosmissi islands	70
26	The new astronomy	70
	The New astronomy	73 77
	The age problem	78
28	Fall of the Victorian universe	70 80
28	Pafloations	80 81
29	Projects	83
	Further reading	83
29	Sources	03 84
30	Sources	04
33		
34	5 Stars	87
34	The distant stars	87
35	A forest of stars	89
37	Inside the stars	93
38	Nuclear energy	95
42	Birth of stars	100
45	The star is dead! Long live the star!	103
46	Reflections	105
46	Projects	110

v

vi

Cambridge University Press 978-1-009-21570-1 — Cosmology: The Science of the Universe Edward Harrison Frontmatter <u>More Information</u>

CONTENTS

Further reading	111
Sources	112
6 Galaxies	113
Our Galaxy	113
The distant galaxies	119
Birth of galaxies	123
Radio galaxies and quasars	126
Reflections	129
Projects	131
Further reading	132
Sources	132
7 I for and the country of the	124
/ Location and the cosmic center	134
The location principle	134
The isotropic universe	13/
I ne cosmological principle	138
Perfect cosmological principle	140
Reflections	141
Further reading	145
Sources	145
Sources	143
8 Containment and the cosmic edge	147
The containment principle	147
The cosmic edge	149
Containment of space and time	153
Design argument	155
Many physical universes	156
Theistic and anthropic principles	157
Whither the laws of nature?	159
Containment riddle	161
Reflections	162
Projects	166
Further reading	167
Sources	167
	1(0
9 Space and time	169
Space	109
Space and time	1/1
The "new"	176
Time travel	1/0
A tomic time	170
Peffections	1/9
Drojoots	
ELANECIS	180
Further reading	180 184 185
Further reading Sources	180 184 185 185

PART II

10 Curved space	189
Euclidean geometry	189
Non-Euclidean geometry	190
Measuring the curvature of space	194
The "outstanding theorem"	196
Riemannian spaces	198
Reflections	199
Projects	203
Further reading	203
Sources	201
Sources	201
11 Special relativity	206
New ideas for old	206
The strangeness of spacetime	207
Travels in space and time	210
Reflections	214
Projects	218
Further reading	218
Sources	219
12 Canaral relativity	220
Principle of equivalence	220
A closer look	220
Geometry and gravity	222
Tidal forces	224
Theory of general relativity	223
Tests of general relativity	220
Mach's principle	235
Deflections	230
Projects	239
Flojects Eurther reading	243
Further reading	244
Sources	243
13 Black holes	246
Gravitational collapse	246
Curved spacetime of black holes	248
Rotating black holes	253
Superholes	257
Miniholes	258
Black-hole magic	259
Hawking radiation	260
Black holes are heat engines	263
Reflections	264
Projects	267
Further reading	268
Sources	268
14 Expansion of the universe	270
The great discovery	270

Cambridge University Press 978-1-009-21570-1 – Cosmology: The Science of the Universe Edward Harrison Frontmatter More Information

CONTENTS

The expanding space paradigm	275
The expanding rubber sheet universe	275
Measuring the expansion of the	
universe	285
The velocity-distance law	287
Accelerating and decelerating universes	289
Classifying universes	290
Reflections	292
Projects	299
Further reading	300
Sources	300
15 Redshifts	302
Cosmic redshifts	302
The three redshifts	306
Two basic laws	307
Distances and recession velocities	309
Cosmological pitfalls	309
Redshift curiosities	311
Reflections	314
Projects	320
Sources	321
16 Newtonian cosmology	323
Static Newtonian universe	323
Expanding cosmic sphere	326
Cosmological constant	331
Why does Newtonian cosmology	
give the same answer?	332
Reflections	333
Projects	336
Further reading	337
Sources	337

17 The cosmic box

The universe in a nutshell
Particles and waves
Thermodynamics and cosmology
Where has all the energy gone?
Reflections
Projects
Sources
18 The many universes

Static universes
De Sitter universe
Friedmann universes
Oscillating universes
Friedmann-Lemaître universes
Classification of universes

Universes in compression	368
Universes in tension	369
Worlds in convulsion	371
Kinematic relativity	373
Continuous creation	374
Scalar-tensor theory	376
Reflections	379
Projects	383
Further reading	384
Sources	384

vii

19 Observational cosmology	387
Introduction	387
Cosmography	387
Local observations	388
Intermediate-distance observations	397
Large-distance observations	400
Is the universe open or closed?	403
Reflections	404
Projects	407
Further reading	408
Sources	408

PART III

20 The early universe	413
The primeval atom	413
The last fifteen billion years	415
The first million years	416
The first second	419
The first hundred microseconds	422
Grand unified era	427
Reflections	428
Projects	435
Further reading	436
Sources	436
21 Horizons in the universe	438
What are cosmological horizons?	438
Horizons in static universes	439
The horizon riddle	441
The horizon problem	442
Hubble spheres	443
Reception and emission distances	444
The photon horizon in cosmology	446
The particle horizon	447
Conformal diagrams	449
Event horizons	451
Reflections	454

viii

Cambridge University Press 978-1-009-21570-1 — Cosmology: The Science of the Universe Edward Harrison Frontmatter <u>More Information</u>

CONTENTS

Projects	457
Sources	457
22 Inflation	458
Perfect symmetry	458
The monopole problem	458
Discovery of inflation	459
Cosmic tension	459
Inflation	460
Inflation solves the monopole problem	463
Inflation solves the flatness problem	463
Inflation solves the horizon problem	465
Nonluminous matter	467
The origin of galaxies	468
Reflections	470
Projects	472
Further reading	472
Sources	473
23 The cosmic numbers	474
Constants of nature	474
The cosmic connection	479
Magic numbers	480
Solving the cosmic connection	483
Reflections	486
Projects	490
Further reading	490
Sources	490
24 Darkness at night	491
The great riddle	491
Two interpretations	493
Halley's shells	494
Bright-sky universes	497
The paradox resolved	499
"The golden walls of the universe"	502
The celebrated hypothesis	503
Expansion and darkness	503

Reflections	506
Projects	513
Further reading	513
25 Creation of the universe	515
Cosmogenesis I	515
Creation myths	515
Genesis	518
Cosmogenesis II	519
Cosmogenesis III	520
Fitness of the universe	522
Fitness and creation	523
Theistic theories	523
Anthropic theories	524
Spontaneous creation theories	524
Natural selection theories	525
Eschatology	526
Reflections	528
Projects	532
Further reading	532
Sources	533
26 Life in the universe	535
Origin of life on Earth	535
The exuberant Earth	537
The evolution of life	538
Natural selection	540
Intelligent life	542
What is life?	542
Life beyond the Earth	543
Epilogue	547
Reflections	547
Projects	551
Further reading	552
Sources	553
Appendix – Fundamental quantities	555
Index	557

PREFACE

This second edition of *Cosmology: The Science of the Universe* revises and extends the first edition published in 1981. Much has happened since the first edition; many developments have occurred, and cosmology has become a wider field of research.

As before, the treatment is elementary yet broad in scope, and the aim is to present an outline that appeals to the thoughtful person at a level not requiring an advanced knowledge in the natural sciences. Cosmology has many faces, scientific and nonscientific; in this work the primary emphasis is on cosmology as a science, but the important historical, philosophical, and theological aspects are not ignored. Mathematics is avoided except in a few places, mostly at the end of chapters, and the treatment is varied enough to meet the needs of both those who enjoy and do not enjoy mathematics.

At the end of each chapter are two sections entitled *Reflections* and *Projects*. The Reflections section presents topics for reflection and discussion. The Projects section raises questions and issues that a challenged reader might care to tackle. Cosmology impels us to ask deep questions, read widely, and think deeply. It is not the sort of subject that lends itself readily to simple yes and no answers. On most issues there are conflicting arguments to be investigated, weighed, rejected, accepted, or modified according to one's personal tastes and beliefs. Cosmology challenges the mind, shapes our way of thinking about the world in which we live, and leaves impressions and ideas that last a lifetime.

Many texts on cosmology and general relativity tend to be too technical for college students and nonspecialists. Numerous lesstechnical treatments now exist that are often too brief and of insufficient scope and depth for a course of study. At the end of each chapter are suggestions for further reading to help the reader explore alternative treatments (sometimes in greater depth and detail) of the subjects discussed in the chapter. Also provided is a list of sources containing references that are usually readable and not too technical; the few that are more technical are included for their historical interest.

The first edition of this book evolved from class notes used for teaching elementary cosmology in the Five College Astronomy Department of Amherst College, Hampshire College, Mount Holyoke College, Smith College, and the University of Massachusetts. At that time the method of grading consisted of brief weekly papers, mostly on topics (germane to the lectures) of each student's choice. It was evident that a text of broad scope was needed that might hold the attention of students of different backgrounds and interests, and provide the information needed for discussions and the preparation of papers. After the publication of the first edition, the method of grading changed and consisted of four equally spaced take-home examinations

х

Cambridge University Press 978-1-009-21570-1 — Cosmology: The Science of the Universe Edward Harrison Frontmatter More Information

PREFACE

followed by an end-of-semester examination. Many questions included in the examinations did not require mathematical skills. Both methods of grading have their advantages and disadvantages. There must be a better way!

I am indebted to many persons for their comments and helpful suggestions, particularly Thomas Arny (University of Massachusetts, Amherst), Gregory Benford (University of California, Irvine), Robert Brandenberger (Brown University), Mario Bunge (McGill University), Thomas Dennis (Mount Holvoke College). James Ellern (University of Southern California, Los Angeles), George Ellis (University of Capetown), Stephen Gottesman (University of Florida, Gainsville), George Greenstein (Amherst College), Gary Hinshaw (NASA/Goddard Space Flight Center), Paul Hodge (University of Washington), Duane Howells (Hughs Research Laboratories), John Huchra (Harvard-Smithsonian Center for Astrophysics), John

Lathrop, Charles Leffert, William McCrea (University of Sussex), A. J. Meadows (Loughborough University of Technology), Heinz Pagels (University of California, Santa Cruz), Joel Primack (University of California, Santa Cruz), Martin Rees (Cambridge University), Joe Rosen (University of Central Arkansas), Rick Shafer (NASA/ Goddard Space Flight Center), Stephen Schneider (University of Massachusetts, Amherst), Joseph Snider (Oberlin College), Joseph Tenn (Sonoma State University), Virginia Trimble (University of California, Irvine). David Van Blerkom (University of Massachusetts, Amherst), Gerard de Vaucouleurs (University of Texas, Austin), and Robert Wilson (Smithsonian Astrophysical Observatory).

I am particularly grateful to Fred Stevenson (University of Leeds) for his helpful comments and corrections.

> EDWARD HARRISON Mesilla, New Mexico, May 1998