Contents

Preface xvii

Chapter 1. Origin of Electronics 1
 1.1 What is Electronics 1
 1.2 Evolution of Electronics 2
 1.2.1 Revisiting the History 2
 1.2.2 Trends of Development 4
 1.3 Widespread Applications 5
 1.4 Electrons, Electricity and Electronics 6
 1.4.1 Electric Current 7
 1.4.2 Drift Velocity, Mobility and Conductivity 8
 1.4.3 Electron Emission from Metal 10
 1.5 Circuits and Sources 11
 1.5.1 Types of Circuits 11
 1.5.2 Voltage and Current Sources 12
 1.6 Active and Passive Device 14
 Multiple Choice-Type Questions and Answers 15
 Reasoning-Type Questions and Answers 16
 Solved Numerical Problems 16
 Exercise 18

Chapter 2. Semiconductor Fundamentals 20
 2.1 Crystalline Solids 20
 2.1.1 Lattice, Basis and Unit Cell 21
 2.1.2 Bravais Lattice and Miller Indices 22
 2.2 Energy Band 24
 2.3 Semiconductors 26
 2.3.1 Electron and Hole 27
 2.3.2 Intrinsic Semiconductor 29
 2.3.3 Doping and Extrinsic Semiconductor 30
 2.3.4 Doping in Compound Semiconductor 32
 2.4 Direct and Indirect Band Gap 32
 2.5 Effective Mass 33
Contents

2.6 Fermi Level, Energy Band and Semiconductors 35
 2.6.1 Energy Band of n-type Semiconductors 38
 2.6.2 Energy Band of p-type Semiconductors 39
2.7 Equilibrium Carrier Concentrations 40
2.8 Drift and Diffusion of Carriers 43
 2.8.1 Drift Current Density 44
 2.8.2 Diffusion Current Density 45
 2.8.3 Semiconductor Current Density 45
 2.8.4 Einstein Relation 46
 2.8.5 Continuity Equation 47
2.9 Hall Effect 48
2.10 Resistivity and Four-Probe Technique 49
Multiple Choice-Type Questions and Answers 50
Reasoning-Type Questions and Answers 53
Solved Numerical Problems 55
Exercise 57
Project Work on Chapter 2 60

Chapter 3. p–n Junction Diodes 61

3.1 Fabrication of p–n Junction 61
3.2 Barrier Formation in p–n Junction 62
 3.2.1 Built-in Potential 64
 3.2.2 Fermi Level in p–n Junction 65
 3.2.3 Energy Band Diagram of p–n Junction 66
3.3 Forward and Reverse Bias 67
 3.3.1 Unbiased Diode 68
 3.3.2 Forward Biased Diode 69
 3.3.3 Reverse Biased Diode 69
3.4 Diode Current–voltage Characteristics 70
 3.4.1 Static and Dynamic Resistance 72
 3.4.2 Cut-in Voltage 74
3.5 Junction Capacitances 74
 3.5.1 Depletion Capacitance 74
 3.5.2 Diffusion Capacitance 75
3.6 Zener Diode 76
 3.6.1 Zener Breakdown 76
 3.6.2 Avalanche Breakdown 77
 3.6.3 Zener Diode Characteristics 79
 3.6.4 Zener Voltage Regulator 80
3.7 Light-Emitting Diode (LED) 82
Table of Contents

Chapter 3. Photodiode and Solar Cell
- 3.8 Photodiode and Solar Cell 84
- 3.9 Metal–Semiconductor Contacts 86
- Multiple Choice-Type Questions and Answers 87
- Reasoning-Type Questions and Answers 91
- Solved Numerical Problems 92
- Exercise 95
- Project Work on Chapter 3 99

Chapter 4. Diode Applications
- 4.1 Piecewise Linear Model 101
- 4.2 Load Line and Q-Point 102
- 4.3 Rectifiers 104
 - 4.3.1 Half-Wave Rectifier 105
 - 4.3.2 Full-Wave Rectifier 111
 - 4.3.3 Bridge Rectifier 114
- 4.4 Filters 117
 - 4.4.1 Capacitor Filter 117
 - 4.4.2 Inductor Filter 119
- 4.5 Clippers 120
 - 4.5.1 Shunt Clipper 120
 - 4.5.2 Series Clipper 120
- 4.6 Clamper 123
- 4.7 Voltage Multiplier 125
- Multiple Choice-Type Questions and Answers 127
- Reasoning-Type Questions and Answers 131
- Solved Numerical Problems 132
- Exercise 134
- Project Work on Chapter 4 138

Chapter 5. Bipolar Junction Transistor (BJT)
- 5.1 Transistors: n–p–n and p–n–p 141
- 5.2 Transistor Operating Principle 142
- 5.3 Common-Emitter Configuration 143
 - 5.3.1 Current Amplification in Transistor 144
 - 5.3.2 Transistor Current Components 145
 - 5.3.3 Common-Emitter Output Characteristics 148
 - 5.3.4 Early Effect 150
 - 5.3.5 CE Input Characteristics 150
 - 5.3.6 CE Transfer Characteristics 150
- 5.4 Common-Base Characteristics 151
- 5.5 Common-Collector Configuration 153
Contents

Chapter 6. Transistor Biasing and Amplification 163
 6.1 Load Line and Q-Point 163
 6.2 Transistor Biasing and Stability 165
 6.3 Base Bias 167
 6.4 Emitter–Feedback Bias 169
 6.5 Collector–Feedback Bias 171
 6.6 Voltage-Divider Bias 172
 6.7 Load: DC and AC 175
 6.8 BJT Small Signal Voltage Amplifiers 177
 6.8.1 Common-Emitter (CE) Amplifier 178
 6.8.2 Common-Collector (CC) Amplifier 182
 6.8.3 Common-Base (CB) Amplifier 184
Multiple Choice-type Questions and Answers 186
Reasoning-Type Questions and Answers 188
Solved Numerical Problems 189
Exercise 194
Project Work on Chapter 6 197

Chapter 7. Network Theorems and Transistor 200
 7.1 Thevenin’s Theorem 200
 7.2 Norton’s Theorem 202
 7.3 Other Useful Theorems 203
 7.3.1 Superposition Theorem 203
 7.3.2 Maximum Power Transfer Theorem 204
 7.4 Two-Port Model and Hybrid Parameters 205
 7.4.1 Transistor as Two-port Network 207
 7.4.2 Significance of h Parameters 209
 7.5 Transistor Amplifier with h Parameters 211
 7.6 Simplified Hybrid Model 214
 7.7 r_s-Model and h-Model 215
 7.8 Transistor: Thevenin and Norton Equivalents 216
 7.9 Frequency Dependence of Gain 219
 7.10 Hybrid-II Model 221
 7.11 Transistor Gain at High Frequency 224
 7.12 Gain and Decibel 227
Chapter 8. Transistor Power and Multistage Amplifiers

8.1 Need for Power Amplification
8.2 Conditions for Power Amplification
8.3 Distortions due to Nonlinearity
 8.3.1 Amplitude Distortion
 8.3.2 Harmonic Distortion
 8.3.3 Intermodulation Distortion
8.4 Amplifier Classes
8.5 Class A Amplifier
 8.5.1 Bias for Voltage Amplifier
 8.5.2 Resistive Load Power Amplifier
 8.5.3 Transformer Coupled Amplifier
8.6 Class B Amplifier
8.7 Push–Pull Amplifier
 8.7.1 Class A Push–Pull Amplifier
 8.7.2 Class B Push–Pull Amplifier
 8.7.3 Crossover Distortion
 8.7.4 Class AB Amplifier
 8.7.5 Complementary Symmetry Amplifier
8.8 Class C Amplifier
8.9 Multistage Amplifiers
 Multiple Choice-Type Questions and Answers
 Reasoning-Type Questions and Answers
 Solved Numerical Problems
Exercise

Chapter 9. Field-Effect Transistor (FET)

9.1 'Field-Effect' and 'Transistor'
9.2 Junction Field-Effect Transistor (JFET)
 9.2.1 JFET Current–Voltage Characteristics
 9.2.2 JFET Transfer Characteristics
9.3 FET Parameters
9.4 FET versus BJT
9.5 MOSFET
 9.5.1 n-Channel Depletion-Type MOSFET
 9.5.2 n-Channel Enhancement-Type MOSFET
Table of Contents

9.6 FET Model 293
9.7 FET Biasing 294
 9.7.1 Self-Bias 294
 9.7.2 Drain-Feedback Bias 296
 9.7.3 Gate Bias 297
 9.7.4 Voltage-Divider Bias 298
9.8 FET Amplifiers 300
 9.8.1 Common-Source (CS) Amplifier 300
 9.8.2 Common-Drain (CD) Amplifier 301
 9.8.3 Common-Gate (CG) Amplifier 302
Multiple Choice-Type Questions and Answers 304
Reasoning-Type Questions and Answers 306
Solved Numerical Problems 307
Exercise 308
Project Work on Chapter 9 310

Chapter 10. Feedback Amplifiers and Oscillators 313
10.1 Concept of Feedback 313
10.2 Types of Feedback 316
 10.2.1 Voltage-series Feedback 317
 10.2.2 Voltage-shunt Feedback 318
 10.2.3 Current-series Feedback 319
 10.2.4 Current-shunt Feedback 320
10.3 Advantages of Negative Feedback 321
 10.3.1 Stability Improvement 322
 10.3.2 Impedance Improvement 322
 10.3.3 Bandwidth Enhancement 324
 10.3.4 Noise Reduction 326
 10.3.5 Reduction of Nonlinear Distortion 326
10.4 Oscillators 327
 10.4.1 Positive Feedback and Oscillation 328
 10.4.2 Resonant Circuit Oscillators 329
 10.4.3 Colpitts Oscillator 331
 10.4.4 Hartley Oscillator 332
 10.4.5 Wien Bridge Oscillator 333
 10.4.6 Phase-Shift Oscillator 338
 10.4.7 Crystal Oscillator 341
10.5 Multivibrators 345
 10.5.1 Astable Multivibrator 345
 10.5.2 Monostable Multivibrator 348
Table of Contents

Multiple Choice-Type Questions and Answers 350
Reasoning-Type Questions and Answers 352
Solved Numerical Problems 353
Exercise 357
Project Work on Chapter 10 359

Chapter 11. Operational Amplifier 362
 11.1 A Review on Amplifiers 362
 11.2 Features of Op-Amp 363
 11.3 Differential Amplifier 365
 11.4 Common Mode Rejection Ratio 368
 11.5 Diff-Amp to Op-Amp 369
 11.6 Offset Parameters 370
 11.7 Slew Rate 373
 11.8 Linear Op-Amp Circuits 374
 11.8.1 Inverting Amplifier 375
 11.8.2 Noninverting Amplifier 377
 11.8.3 Virtual Short and Virtual Ground 382
 11.8.4 Voltage Follower 383
 11.8.5 Op-Amp Adder (Inverting) 384
 11.8.6 Op-Amp Adder (Noninverting) 385
 11.8.7 Differential Amplifier 386
 11.8.8 Instrumentation Amplifier 388
 11.8.9 Passive and Active Filters 389
 11.8.10 Active Low-Pass Filter 392
 11.8.11 Active High-Pass Filter 394
 11.8.12 Active Band-Pass and Band-Stop Filters 395
 11.9 Nonlinear Op-Amp Circuits 396
 11.9.1 Integrator 396
 11.9.2 Differentiator 398
 11.9.3 Comparator 400
 11.9.4 Schmitt Trigger 401
 11.9.5 Logarithmic Amplifier 402
 11.9.6 Solving Algebraic Equation 403
 11.9.7 Solving Differential Equation 404
 11.9.8 Precision Rectifier 405
 11.10 Op-Amp Waveform Generators 406
 11.10.1 Square Wave Generator 406
 11.10.2 Triangular Wave Generator 407
 11.10.3 Sine Wave Generator 409
Contents

Multiple Choice-Type Questions and Answers 409
Reasoning-Type Questions and Answers 414
Solved Numerical Problems 415
Exercise 422
Projects on Chapter 11 428

Chapter 12. IC Technology and Instrumentation 432

12.1 Integrated Circuit (IC) 432
12.2 IC Classification 433
12.3 IC Fabrication 436
12.4 IC Components: Active and Passive 437
12.5 Regulated Power Supply 439
12.6 Cathode Ray Oscilloscope (CRO) 442
 12.6.1 Construction of CRO 444
 12.6.2 Working Principle 445
 12.6.3 Electrostatic Focusing 446
 12.6.4 Electrostatic Deflection 447
 12.6.5 Waveform Display 449
 12.6.6 Applications of CRO 451
12.7 Digital Storage Oscilloscope 454
Multiple Choice-Type Questions and Answers 456
Reasoning-Type Questions and Answers 457
Solved Numerical/Analytic Problems 458
Exercise 459

Chapter 13. Digital Principles and Boolean Algebra 460

13.1 The Digital System 460
 13.1.1 Analog and Digital 460
 13.1.2 Pros and Cons of Digital System 461
13.2 Number Systems and Conversions 462
 13.2.1 Binary Numbers 463
 13.2.2 Binary to Decimal Conversion 464
 13.2.3 Decimal to Binary Conversion 464
 13.2.4 Octal Numbers 467
 13.2.5 Hexadecimal Numbers 469
13.3 Digital Codes 470
13.4 Binary Arithmetic 472
 13.4.1 1’s Complement and 2’s Complement 473
 13.4.2 Radix Complements 477
 13.4.3 Signed Binary Numbers 478
Chapter 13. Boolean Algebra

13.5 Boolean Algebra
 13.5.1 OR Operation
 13.5.2 AND Operation
 13.5.3 NOT Operation
 13.5.4 De Morgan’s Theorems

13.6 Boolean Simplification

13.7 Sum-of-Products and Product-of-Sums
 13.7.1 Sum-of-Products (SOP)
 13.7.2 Product-of-Sums (POS)

13.8 Karnaugh Map
 13.8.1 Don’t Care Conditions
 13.8.2 Simplification is not Unique
 13.8.3 SOP and POS are Equivalent

Multiple Choice-Type Questions and Answers
Reasoning-Type Questions and Answers
Solved Numerical and Logical Problems
Exercise
Projects on Chapter 13

Chapter 14. Combinational Logic Circuits

14.1 Boolean Algebra and Digital Electronics
 14.1.1 Combinational and Sequential Logic
 14.1.2 Positive and Negative Logic

14.2 Logic Gates
 14.2.1 OR Gate
 14.2.2 AND Gate
 14.2.3 NOT Gate
 14.2.4 NOR Gate (Universal Gate)
 14.2.5 NAND Gate (Universal Gate)
 14.2.6 Bubbled Gates
 14.2.7 Exclusive-OR (XOR) Gate
 14.2.8 Timing Diagram

14.3 Logic Families
 14.3.1 Transistor–Transistor Logic (TTL)
 14.3.2 MOS Logic

14.4 Arithmetic and Logic Circuits
 14.4.1 Half Adder
 14.4.2 Full Adder
 14.4.3 Half and Full Subtractors
 14.4.4 Adder–Subtractor
 14.4.5 Digital Comparators
Contents

14.5 Data Processing Circuits 533
 14.5.1 Multiplexer 533
 14.5.2 Demultiplexer 536
 14.5.3 Decoders 536
 14.5.4 Seven-Segment Display 537
 14.5.5 Encoders 540
 14.5.6 Parity Checker and Generator 541
Multiple Choice-Type Questions and Answers 542
Reasoning-Type Questions and Answers 546
Solved Logical Problems 547
Exercise 552
Project Work on Chapter 14 555

Chapter 15. Sequential Logic Circuits 557
 15.1 Clock and Timer 557
 15.1.1 Clock Parameters 558
 15.1.2 Working Principles of IC 555 559
 15.1.3 Astable Multivibrator with IC 555 560
 15.1.4 Monostable Multivibrator with IC 555 562
 15.2 Latch and Flip-Flop 563
 15.2.1 Bistable Multivibrator 564
 15.2.2 RS Flip-Flop with NOR Gates 565
 15.2.3 RS Flip-Flop with NAND Gates 567
 15.2.4 Clocked RS Flip-Flop 569
 15.2.5 D Flip-Flop 570
 15.2.6 JK Flip-Flop 571
 15.2.7 Racing and Propagation Delay 572
 15.2.8 Edge- and Pulse-Triggering 573
 15.2.9 JK Master–Slave Flip-Flop 575
 15.2.10 T Flip-Flop 577
 15.3 Flip-Flop Characterization 578
 15.3.1 Characteristic Equation 579
 15.3.2 State Diagram 579
 15.3.3 Preset and Clear 580
 15.4 Register 581
 15.4.1 Register with Series and Parallel Shifting 583
 15.4.2 Ring Counter 586
 15.4.3 Johnson Counter 587
 15.4.4 Register Applications 588
 15.5 Counters 588
 15.5.1 Asynchronous Counter 589
 15.5.2 Synchronous Counter 591
Contents

15.6 Changing Counter Modulus 592
 15.6.1 Mod-3 Counter 593
 15.6.2 Mod-6 Counter 593
 15.6.3 Mod-5 Counter 594
 15.6.4 Decade (Mod-10) Counter 595
 15.6.5 Decade Counter using Preset-Clear 596
 15.6.6 Applications of the Counter 598

Multiple Choice-Type Questions and Answers 598
Reasoning-Type Questions and Answers 600
Solved Numerical Problems 602
Exercise 604

Chapter 16. Analog–Digital Conversion and Memory 609
16.1 Why D/A and A/D Conversions 609
16.2 Binary Equivalent Weight 610
16.3 Digital-to-Analog (D/A) Conversion 611
 16.3.1 Weighted Resistor D/A Converter 611
 16.3.2 R-2R ladder D/A Converter 614
 16.3.3 D/A Converter Performance 617
16.4 Analog-to-Digital (A/D) Conversion 618
 16.4.1 Flash A/D Converter 618
 16.4.2 Counter-Type A/D Converter 620
 16.4.3 Successive-Approximation A/D Converter 622
16.5 Memory 622
 16.5.1 Read-Only Memory (ROM) 625
 16.5.2 Random Access Memory (RAM) 627
 16.5.3 Memory Addressing 629
 16.5.4 Memory Read/Write 630

Multiple Choice-Type Questions and Answers 631
Reasoning-Type Questions and Answers 633
Solved Numerical Problems 633
Exercise 634
Project Work on Chapter 16 635

Chapter 17. Microcomputer and Microprocessor 637
17.1 Evolution of Computer 637
 17.1.1 Historical Background 637
 17.1.2 Modern Computer 639
17.2 Computer, Microprocessor and Microcontroller 641
 17.2.1 Computer Organization 641
 17.2.2 Use of Microprocessor 643
 17.2.3 Use of Microcontroller 644
Contents

17.3 Hardware and Software 646
 17.3.1 Operating System 646
 17.3.2 Computer Languages 648
17.4 Microprocessor 8085 650
 17.4.1 Pin Configuration 652
 17.4.2 Operational Code (Opcode) 653
17.5 8085 Programming 654
 17.6 Types of 8085 Instructions 655
17.6 Use of Subroutine 657
17.7 Arduino Programming 669
 17.8 Arduino Board 670
 17.8.1 Arduino IDE 670
 17.8.2 Pin Configuration 672
Multiple Choice-Type Questions and Answers 673
Reasoning-Type Questions and Answers 674
Solved Examples 675
Exercise 677
Bibliography 679
Index 681