
Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

GETTING STARTED

In the software industry across the globe, there is a need to develop large and complex software.

This software should be platform independent, internet enabled, easy to modify, secure, and robust.

To meet these requirements object-oriented paradigm has been advocated. Based on this paradigm,

Java programming language emerges as the best programming environment. Java is used for mobile

programming, internet programming, and many other applications compatible with distributed systems.

This book aims to cover the essential components of Java programming so that the readers can improve

their skills, cope with the demands of the IT industry and solve the problems in their own field of study.

1.0 Introduction

IT industry operates in such a diverse environment that software programs
should not be confined to a single PC. Rather, they should move from a single
user environment to mainframes, to networks, to network of networks, and
so on. A giant program can be developed which integrates numerous mini
programs which were developed by geographically distributed programmers,
and all of them can be connected online. Such a distributed programming
techniques and environments are no longer a dream but a reality, and it is
Java, the Internet programming language, which makes it possible.

Java was developed by Sun Microsystems Inc. with the intent to create a
dynamic, object-oriented programming (OOP) language, suitable for using
the same types of development tasks as C and C++, but without the difficulties
and bugs common to those languages. This is why Java has been touted as
“a better C++”; it contains all the essential OOP features, but with lower
complexities than C++. Sun describes Java as a “simple, object-oriented,
distributed, interpreted, robust, secure, architecture neutral, portable, high-
performance, multithreaded, and dynamic language.”

Necessity

Scope

www.cambridge.org/9781009211918
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Joy with Java

In this chapter we shall briefly highlight the various features of Java
programming, its superiority over other programming languages, and the
tools available for its programming. At the end, you will be able to run your
first program in Java.

1.1 Concept of Programming

Computer programming is used to build a software system (e.g., Microsoft
Word, Library Information System, Internet Explorer browser, mobile app,
printer’s driver software, to name a few). These software systems take an
input and then produce an output (Figure 1.1). Note that input/output can
be of any form like text, audio, video, handwritten character, and so on.

Input
Device

Output
Device

Central Processing Unit

Memory Unit

Control Unit

Arithmetic/Logic Unit

Figure 1.1 Computing system

Your

learning

Application

systems

Programming

Program

translation

1.1.1 Computer and Its Working

In order to process an input and produce an output, a program is required.
A program contains of steps to transform input to a corresponding output.
A computing system follows a basic architecture, popularly called Von
Neumann architecture, to run programs. According to this architecture, a
program is loaded into the memory of the computer. This program is then
executed by the Central Processing Unit (CPU), which consists of a control
unit, an arithmetic unit, and a logic unit.

Thus, a program is a set of steps (or, instructions to the CPU). A program
is written using a programming language. There are different kinds of
programming languages, such as machine language (first generation
language or 1GL), assembly language (second generation language or 2GL),
high-level language (third generation language or 3GL), and so on. But a

www.cambridge.org/9781009211918
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

3Getting Started

computer can understand instructions only in machine language. Hence, a
program in 2GL or 3GL has to be translated into machine language. That
is done by using a program translator, also called a compiler or interpreter
(Figure 1.2). As shown in the figure, an assembler translates a program
in assembly language to machine language and a compiler or interpreter
translates a program in high-level language to machine language.

Figure 1.2 Program translation schemes

Java

programming

Program

11010111
10100101

ADD X Y
MOV Z A
…

#include<…>
main(){

printf(“…”)
}

Assembler

Interpreter

Compiler

Machine Level Assembly Level High Level

ADD XY
MOV ZA
...

Assembly Level

#include<...>
main(){
 printf(”...”)
}

High Level

Program

11010111
10100101

Machine Level

Assembler

Interpreter

Compiler

Like different high-level languages (e.g., C, C++, Pascal, Python, Java),
machine languages also vary from one CPU to another (e.g., Intel, Sun, IBM,
Macintosh), and from one operating system (OS) to another (e.g., Windows,
Solaris, MacOS, Android). Different assemblers, compliers or interpreters
are required according to the different programming environments (CPU
or OS). In contrast, the approach in Java is different. Here, a Java compiler
translates a Java program into Java byte codes (according to a virtual machine,
which is a hypothetical CPU). These byte codes are then interpreted by a
Java interpreter to run the program. So, an application developed using Java
is in the form of byte codes. This application, then, can be executed in any
hardware or operating system and thus programming becomes architecture
neutral or platform independent.

1.1.2 Programming Paradigms

Out of the numerous programming paradigms, two are followed more
often in industries: function-oriented programming paradigms and object-
oriented programming paradigms.

www.cambridge.org/9781009211918
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Joy with Java

A function in its general sense is a mapping procedure from an input to
an output. It takes one set of data as an input and produces another set of
data as output. For example, x = GCD(m,n) is a function which returns x as
the greatest common divisor given two input numbers m and n. In another
example, given an array of numbers, a sorting function on this data set will
produce another array of numbers. A function in its simplest form can do
one functional task. If a function is to complete more complex tasks, then it
can be decomposed into a number of smaller functions (called sub functions,
sub sub-functions, and so on). For example, there can be a function to find
if a person’s email address is available on the Internet repository. Here, the
basic function is search(…), which can be composed of retrieve(…) followed
by sort(…) and then check(…). Note that sort(…), check(…) functions can be
in terms of some other smaller functions, and so on.

A programming principle which is based on concept of function is called
function-oriented programming. To build a system, we have to build a set
of functions. The system itself is a function, which can be composed as a set
of functions. For example, in a bank ATM system, withdraw money, deposit
money, balance enquiry, PIN change, and so on, are functions. The concept
of function-oriented programming can be better understood through Figure
1.3. There are several functions in this figure which are centered around some
data to be processed. Here, data is globally available to the functions. Thus,
in function-oriented programming, a system is a collection of functions.

Concept of

function

Function-

oriented

programming

Function x

Function y

Function z

Function i

Function j Function k

Function l

Function m
Data

Figure 1.3 Function-oriented programming

www.cambridge.org/9781009211918
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

5Getting Started

Object-oriented programming, in contrast to function-oriented
programming, is based on the concept of object. A function in function-
oriented programming is a verb, whereas an object in object-oriented
programming is a noun. In real world, a material thing that can be seen and
touched, or a person or thing to which a specified action or feeling is directed,
is called an object. A student, a car, and a book are some examples of objects.
An object is defined by a set of attributes. For example, name, roll number,
date of birth, and department are some attributes by which a student (object)
can be defined. In real world, an object can send (or receive) message(s) to
(or from) another object. For example, a student sends a message “issue” to
a book and book can send a message “fine” to the student.

Such a real-world scenario is modeled in object-oriented programming.
A system’s functionality is accomplished by means of communication of
messages among the objects. On receiving a message, an object changes
its state. States of an object are characterized by the change of value(s) of
attribute(s). Each object has its data in it and also knows to how to process
that data. Both data and operation on that data together define an object. A
task is carried out by the invocation of operations by another object. Such a
programming paradigm is illustrated in Figure 1.4.

Figure 1.4 Object-oriented paradigm

Concept of

object

Object-

oriented

programming

In object-oriented programming, a system is a collection of objects. Unlike
function-oriented programming, there is no global data here. Instead, the
data is locally distributed among the objects.

www.cambridge.org/9781009211918
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Joy with Java

Let us consider the system of getting an email address from the Internet.
Here, a user “sends” a person’s profile to a browser. The browser “retrieves”
all email addresses “matching” the profile from the Internet. The browser
then “sends” the list to the person. The person then “retrieves” the email
address.

1.2 Object-Oriented Programming Paradigms

The programming principles followed in function-oriented programming
include how to define a function, how a function can be decomposed to smaller
functions, and how data can flow from one function to another. In contrast,
object-oriented programming follows radically different programming
paradigms. There are mainly four object-oriented programming paradigms:
Encapsulation, Inheritance, information hiding and polymorphism. All
these OOP paradigms are discussed in the following sections.

1.2.1 Encapsulation

In object-oriented programming, the object is at the center of the stage.
The object contains both data and the methods that operate the data.
Encapsulation is the process of wrapping method and data together into a
single unit. Figure 1.5 illustrates the encapsulations of two types of objects:
a book and a borrower. The encapsulation procedure allows a programmer
to define the type of object (such as books, borrowers). Such a type is called
class. Thus, in Figure 1.5, Book and Borrower are two classes which define
two types of objects. Notice that for simplicity, the body of the methods are
not included in Figure 1.5.

OOP

paradigms

Examples of

objects

Title

Author

Accession No.

Cost

Borrower

DOI

Issue()

Fine()

Return()

Open()

Close()

Name

Roll No.

Address

Marks

Books[]

Search Books()

Request()

Renew()

Enroll()

Exit()

data

methods

data

methods

Book Borrower

Figure 1.5 Encapsulation in OOP

www.cambridge.org/9781009211918
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

7Getting Started

Generalized

to

specialized

object

Figure 1.6 Inheritance in OOP

Reference

Text

Book

Title
Author

Accession No.
Cost

Borrower DOI

Issue()

Fine()

Return()

Open()

Close()

DOP

Version

Department

Add()

Remove()

Publisher
Rack No.

Permission
Copy Type

Display()
Close()
Open()
Copy()

1.2.2 Inheritance

Inheritance is a mechanism in which one object acquires all or some of
the properties and behaviors of a parent object. This paradigm allows a
programmer to extend a class into another. Such an extension is useful to
update or modify the system without disturbing the existing system. It also
allows code sharing.

Figure 1.6 illustrates the concept of inheritance. In this figure, Book is a class.
Two child classes, namely Text and Reference are inherited from the parent
class, Book. By this inheritance, the class Text, for example, inherits all the
fields and methods in the class Book. In addition to these, the class Text has
its own field and methods. The methods Close() and Open() are redefined in
the class Reference.

1.2.3 Information Hiding

This paradigm is allowed to limit the accessibility of fields and methods
outside the class. This is particularly applicable when a class is inherited from
another class. In such situations, the programmer may limit the access of
some method and field to the methods in the child class. In object-oriented
programming, such a mechanism is called information hiding.

www.cambridge.org/9781009211918
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Joy with Java

1.2.4 Polymorphism

In object-oriented programming, polymorphism (from Greek, meaning
“having multiple forms”) is the characteristic of being able to assign a
different meaning or usage to the same thing but in different contexts,
specifically, to allow an entity such as a variable, a method, or an object to
have more than one form. The idea of polymorphism in an object-oriented
paradigm can be better understood from Figure 1.8. The figure includes
four polymorphic representations of the method Add(…). Here, the method
name Add(…) has polymorphic behavior. When Add(…) is called with x, y,
two integer numbers, it will add the value and return the result. However, the
same method, with two documents as input, will merge the two documents
into a single document.

Figure 1.7 illustrates the information hiding mechanism. In this case, we are
talking about the class Book. It may be noted that there are access specifiers,
namely Public, Private, and Protected. All fields and methods under Public
access specifier are accessible to any methods belonging to any class. The
field and methods which are under Private access specifier are accessible
only to the methods inside the class Book, whereas the fields and methods
under the Protected specifier are accessible to methods in the child class(es)
of the class Book.

Same name

but different

activity

Public

Title

Author

Protected

Account No.

Private

Cost

Public

Issues()

Returns()

Protected

Resave()

Private

Open()

Close()

Book

Figure 1.7 Information hiding in OOP

www.cambridge.org/9781009211918
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

9Getting Started

Origin of

Java

Starting

point

Figure 1.8 Polymorphism in OOP

Add two numbers

Merge two strings

Paste an Image to a document

Merge two documents

x,y;
s1,s2;

img,Doc,Doc1,Doc2

Add(x,y)
Add(s1,s2)

Add(img,Doc)
Add(Doc1,Doc2)

Add(x,y) : 12+34

Add(s1 + s2) : Debasis + Samanta

Add(img,Doc) : Image +Document

Add(Doc1,Doc2) : Document1 + Document2

1.3 About Java Programming

James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java
language project in June 1991. This small team of Sun engineers is called the
Green Team. The language was called “Greentalk” by James Gosling, and file
extension of a program file was .gt.

The language was originally designed for small, embedded systems in
electronic appliances like set-top boxes, but it was a very advanced technology
for the digital cable television industry at that time. Subsequently, the
language was called “Oak” and was developed as a part of the Green project.
The team members initiated this project to develop a language for digital
devices. Later, this technology was used by Netscape as it was suitable for
networking.

The language was called “Oak” as oak is a symbol of strength and is the
national tree of many countries like USA, France, Germany, and Romania.
The team wanted something that reflected the essence of the technology:
revolutionary, dynamic, lively, cool, unique, and easy to spell and fun to
speak. In 1995, Oak was renamed as “Java.” Java is an island in Indonesia
where coffee was first produced (called java coffee).

In 1995, Time magazine called Java one of the “Ten Best Products of 1995.”
JDK (Java Development Kit) 1.0 was released on January 23, 1996.

The name

Java

Breakthrough

www.cambridge.org/9781009211918
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-21191-8 — Joy with Java
Debasis Samanta , Monalisa Sarma
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Joy with Java

Definition of

Java

James Gosling

OAK TREE

Figure 1.9 History of Java

Figure 1.10 Characteristics of Java language

1.3.1 Why Java?

Java programming concept possesses all the advanced programming features
of the recent programming languages. In addition, it has something special
which makes it the first of its kind. The developer of Java described the Java
language as: simple, portable, secure, high-performance, multithreaded,
interpreted, platform independent, dynamic, architecture neutral, object-
oriented, and robust. A few notable characteristics in Java programming
language are summarized in Figure 1.10.

Java

-

Simple Robust

Object-
Oriented

Architecture
Neutral

Dynamic

Platform
Independent

High
Performance

Secure

Portable

www.cambridge.org/9781009211918
www.cambridge.org

