Cambridge University Press & Assessment 978-1-009-20904-5 — Quantitative Risk and Portfolio Management Kenneth J. Winston Frontmatter <u>More Information</u>

Quantitative Risk and Portfolio Management

A comprehensive modern introduction to risk and portfolio management for quantitatively adept advanced undergraduate and beginning graduate students who will become practitioners in the field of quantitative finance. With a focus on real-world application, but providing a background in academic theory, this text builds a firm foundation of rigorous but practical knowledge. Extensive live data and Python code are provided, allowing a thorough understanding of how to manage risk and portfolios in practice. With its detailed examination of how mathematical techniques are applied to finance, this is the ideal textbook for giving students with a background in engineering, mathematics, or physics a route into the field of quantitative finance.

Kenneth J. Winston is a Lecturer in Economics at the California Institute of Technology and an Adjunct Professor of Mathematics at New York University. Having trained as a combinatorist at MIT, he moved into the field of quantitative finance, creating algorithms for equity and option investment strategies. He worked as a Chief Risk Officer at Western Asset Management and Morgan Stanley, and is a founder of the Buy Side Risk Managers Forum. Winston won the 2006 Roger Murray Award at the Institute for Quantitative Research in Finance and is a co-editor of *The Oxford Handbook of Quantitative Asset Management* (Oxford University Press, 2014).

Cambridge University Press & Assessment 978-1-009-20904-5 — Quantitative Risk and Portfolio Management Kenneth J. Winston Frontmatter More Information

> "This is the book I wish I had had when I started my career in quantitative finance twenty years ago. It is written with the rigor of an academic, the insight of an experienced practitioner, and the didactic style of an empathetic and engaging teacher. Winston connects with his readers through insightful and entertaining discussions of historical background and of how actual financial markets behave or misbehave. At the same time, he provides rigorous but crystal clear and unhurried explanations of technical concepts. His choice of topics reflects current practice. A practitioner will find much to learn and enjoy in this book. A student who masters this material will be well prepared for a career in quantitative finance."

> > Colm O'Cinneide, Franklin Templeton Investments

"Ken Winston has created a concise, valuable reference for the quantitatively minded that, in addition to describing our standard approaches for asset pricing and risk management, shows how these tools can and must be extended to reflect the more complicated risks we actually face."

David Germany, Pitzer College

"This book is a remarkable combination of finance theory, mathematics, and practice. The development of finance theory is deep enough to challenge the most advanced students, yet it is full of applications. The author's long history of developing risk models is evident in every chapter. The book belongs in the curricula of the best graduate programs in finance and economics."

Charles Trzcinka, Indiana University

"Few people are as qualified as Ken Winston to provide an academically disciplined practitioner view of how to manage and profit from investment risk-taking. Trained as a mathematician, Ken was the chief risk officer for some of the world's largest investment managers. Successful risk managers must have excellent quantitative and people skills, and Ken has both. The value of quantitative skill is evident in a game of numbers. People skills are necessary to communicate and successfully enforce limits on managers who too often dream of unachievable profits. Ken drew on both sets of skills to produce this innovative book, already well tested in his classrooms at Cal Tech and NYU. It is an essential read for all aspiring investment managers."

Larry Harris, University of Southern California

"This is the book that I wish I had been able to have when I switched from applied math/ engineering to applied finance more than thirty years ago. In essence, the book fills a very important void: how to approach financial engineering problems from the practitioner's viewpoint. A must-have for risk managers and investment professionals."

Arturo Cifuentes, Chile Sovereign Fund

Cambridge University Press & Assessment 978-1-009-20904-5 — Quantitative Risk and Portfolio Management Kenneth J. Winston Frontmatter <u>More Information</u>

Quantitative Risk and Portfolio Management

Theory and Practice

Kenneth J. Winston

California Institute of Technology

Cambridge University Press & Assessment 978-1-009-20904-5 — Quantitative Risk and Portfolio Management Kenneth J. Winston Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781009209045

DOI: 10.1017/9781009209090

© Kenneth Winston 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Names: Winston, Kenneth James, author. Title: Quantitative risk and portfolio management : theory and practice /

Kenneth J. Winston, California Institute of Technology. Description: Cambridge, United Kingdom ; New York, NY : Cambridge

University Press, 2023. | Includes bibliographical references and index. Identifiers: LCCN 2022055743 (print) | LCCN 2022055744 (ebook) | ISBN 9781009209045 (hardback) | ISBN 9781009209076 (paperback) | ISBN 9781009209090 (epub)

Subjects: LCSH: Portfolio management–Mathematical models. | Financial risk management–Mathematical models.

Classification: LCC HG4529.5 .W566 2023 (print) | LCC HG4529.5 (ebook) | DDC 332.6-dc23/eng/20221201

LC record available at https://lccn.loc.gov/2022055743

LC ebook record available at https://lccn.loc.gov/2022055744

ISBN 978-1-009-20904-5 Hardback

Additional resources for this publication at www.cambridge.org/winston

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-009-20904-5 — Quantitative Risk and Portfolio Management Kenneth J. Winston Frontmatter <u>More Information</u>

Contents

	List	of Imag	ges	page x
	List	of Figu	res	xi
	Prefa	XV		
	Ackı	nowledg	gments	xxviii
1	Wh	at Is R	isk?	1
	1.1		Knight's Formulation	2
	1.2		Probability Spaces	3
	1.3		tian Uncertainty	4
	1.4	-	ng Risky Decisions	6
		1.4.1		6
		1.4.2	-	7
		1.4.3		8
	1.5		Economics Terminology	9
	1.6		Capital Markets Terminology	12
	1.7		Probability Terminology	15
	1.8		7 Theory	20
		1.8.1	Von Neumann–Morgenstern Utility Theory	22
		1.8.2	- · ·	23
		1.8.3	Risk Preferences	26
		1.8.4	Drawbacks of Utility Theory	32
2	Risl	c Metr	ics	37
	2.1		t Laws	37
		2.1.1	Portfolio Insurance	39
	2.2	Volati	lity	42
	2.3		ES, cVaR, and Spectral Measures	44
		,	VaR Measures with Discrete Distributions	47
	2.4	Risk-A	Adjusted Reward Measures	50
	2.5		ent Risk	53
	2.6	Risk-A	Averse Prices	56
	2.7	No-A1	rbitrage	58
		2.7.1	Limits of Arbitrage	59
		2.7.2	-	60
		2.7.3	-	66
			-	

V

vi Contents

	2.8	State	Prices and Risk-Neutral Probabilities	66
	2.9	Stoch	astic Discount Factors	68
	2.10	The R	Ross Recovery Theorem	72
		2.10.1	Ross Recovery: Key Assumptions	73
		2.10.2	2 Ross Recovery: Matrix Calculations	75
		2.10.3	3 Computing the SDF: Ross's Method	76
		2.10.4	Computing the SDF: Jackwerth and Menner's Method	77
		2.10.5	Ross Recovery Theorem: Empirical Problems	78
3	Fixe	d-Inc	ome Modeling	81
	3.1	Real,	Inflation, and Nominal Rates	82
	3.2	Disco	unting	85
	3.3	The R	lisk in the Risk-Free Rate	86
	3.4	Basic	Fixed-Income Mathematics	89
		3.4.1	Generic Pricing Equation	90
		3.4.2	Price Changes as Rates Change	91
		3.4.3	Duration Calculations; Convexity	93
		3.4.4	Approximations and Basis Risk	96
	3.5	Yield	Curves	97
		3.5.1	Features of Yield Curves	99
		3.5.2	Zero Curves and Par Curves	100
		3.5.3	Types of Yield Curves	103
		3.5.4	Yield Curves and Economic Conditions	103
		3.5.5	Rolldown and Key Rate Durations	105
		3.5.6	Interpolation and Smoothing Techniques	107
	3.6	Implie	ed Forward Curves	109
	3.7	Stoch	astic Process Terminology	111
	3.8	Term	Structure Models	114
		3.8.1	Short-Rate Models: General Framework	115
		3.8.2	Short-Rate Models: Specific Framework	116
		3.8.3	Expected Value of the Vasicek Model	119
		3.8.4	Other Short-Rate Models	121
4	Equ	ity Mo	odeling	123
	4.1	Marko	owitz Efficient Frontier	123
		4.1.1	Equality-Constrained Frontier	126
		4.1.2	Equality-Constrained Frontier: Example	129
		4.1.3	Inequality Constraints	131
		4.1.4	Efficient Frontier and Utility Functions	133
		4.1.5	The Capital Market Line	134
		4.1.6	*	136
		4.1.7	Efficient Frontiers: Theory and Practice	138

Contents

	4.2	Parameter Estimation Methods	139
		4.2.1 Review of Bayes's Rule	139
		4.2.2 Shrinkage Estimators	142
		4.2.3 Statistical Tests	147
		4.2.4 Resampled Efficient Frontier	151
	4.3	Black–Litterman	154
		4.3.1 Black–Litterman Example	156
5	Con	vex Optimization	159
	5.1	Basic Optimization Terminology	159
	5.2	Convex Properties	161
	5.3	Unconstrained Convex Optimization	165
		5.3.1 Gradient Descent	167
		5.3.2 Newton's Method	171
	5.4	Constrained Optimization	173
		5.4.1 Lagrange Duality	175
		5.4.2 KKT Conditions with Convexity	178
	5.5	Barrier Methods	180
6	Fact	tor Models	187
	6.1	The Efficient Market Hypothesis	188
	6.2	The Capital Asset Pricing Model and the Four-Factor Model	190
	6.3	Arbitrage Pricing Theory	192
		6.3.1 APT: Exact Form	193
		6.3.2 APT: Inclusion of Specific Behavior	195
	6.4	Factor Models in Practice	198
	6.5	Principal Components Analysis	200
7	Dist	tributions	210
	7.1	Central Limit Theorem	211
		7.1.1 Checking Normality: Q-Q and P-P Plots	213
		7.1.2 Jarque–Bera	215
		7.1.3 Causes of Non-Normality	216
		7.1.4 Market Ages	217
	7.2	Student's T Distribution	220
	7.3	Mixtures of Normals	222
	7.4	Stable Distributions	226
	7.5	Extreme Value Distributions	231
		7.5.1 Block Maxima	234
		7.5.2 Domains of Attraction	236
	7.6	Tail Distributions	237
		7.6.1 Fitting Parameters to Tail Distributions	239

vii

8	Sim	ulation, Scenarios, and Stress Testing	244
	8.1	Historical Simulation	245
	8.2	Delta-Normal	248
		8.2.1 The Cornish–Fisher Expansion	252
	8.3	Monte Carlo Simulation	253
		8.3.1 Delta-Gamma, Delta-Gamma-Theta Simulations	257
	8.4	Markov Chain Monte Carlo	258
	8.5	Stress Testing and Scenario Analysis	265
9	Tim	e-Varying Volatility	267
	9.1	Historical Volatility	267
	9.2	Options and Volatility	270
		9.2.1 Review of Options Terminology	270
		9.2.2 Market Volatilities and Volatility Markets	273
		9.2.3 Volatility Skews	276
	9.3	Volatility Models	278
		9.3.1 Risk-Neutral Density Recovery	279
		9.3.2 Real-World Density Recovery	280
		9.3.3 Stochastic Volatility Modeling	282
		9.3.4 Local Volatility Modeling	283
		9.3.5 SABR Modeling	284
		9.3.6 VIX® Calculations	286
	9.4	Time Series Terminology	289
	9.5	ARCH and GARCH Modeling	293
		9.5.1 ARCH and GARCH variants	297
10	Mod	leling Relationships	301
	10.1	Pearson Correlation	301
	10.2	Spearman Correlation	303
	10.3	Conditional Correlation	305
	10.4	Correlations and the Economy	309
	10.5	Implied Correlations	312
	10.6	Copula Functions	316
		10.6.1 Copula Example: Gaussian Copulas	318
	10.7	Historical Estimation of Correlation Matrices	322
	10.8	Time Series Estimates of Covariances and Correlations	325
		10.8.1 Constant and Dynamic Conditional Correlation	325
		10.8.2 Implementation of Dynamic Conditional Correlations	328
		10.8.3 MacGyver Method	333

	Cont	tents	ix
11	Cree	dit Modeling	335
		Basic Credit Risk Concepts	335
		Credit Ratings	337
		11.2.1 Investment Grade and Speculative Grade	340
		11.2.2 Historical Default Frequencies	342
		11.2.3 Sovereign Debt Ratings	348
		11.2.4 Sovereign Spreads in the Eurozone	352
	11.3	The Credit Spread Premium Puzzle	354
		The Merton Model	357
		11.4.1 Merton's Term Structure of Credit Spreads	359
		11.4.2 Enterprise Value Example	361
		11.4.3 Model Improvement: Iterative Enterprise Value	363
		11.4.4 Model Improvement: KMV model	365
		11.4.5 Predictive Power of Default Estimates	368
	11.5	Credit Spread Correlates	371
	11.6	Credit Spread Metrics	372
	11.7	Credit Factor Models	375
	11.8	Z-Scores, Reduced-Form, and Hybrid Models	377
	11.9	Implied Default Rates	381
	11.10) Credit Default Swaps	383
12	Hed	ging	387
	12.1	Risk Unbundling	387
		12.1.1 Quantity-Adjusting Options	391
	12.2	Franchise Preservation	395
		12.2.1 Siegel's Paradox	397
		12.2.2 Modigliani–Miller and Franchise Hedging	402
		12.2.3 Bank Franchise Hedging	406
		12.2.4 Asset-Liability Management: Interest Rate Swaps	410
		12.2.5 Interest Rate Swaps: Simplified Model	413
		12.2.6 Interest Rate Swaps: Market	416
		12.2.7 Longevity Risk	419
	12.3	Illiquidity Hedging	420
	12.4	Distribution Reshaping	422
		12.4.1 Distribution Reshaping with Options	423
		12.4.2 Option Greeks	429
		12.4.3 Fixed-Income Options	433
	12.5	Convexity Hedging	434
	Appo	endix: Code Segments	440

References

Index

591

609

Cambridge University Press & Assessment 978-1-009-20904-5 — Quantitative Risk and Portfolio Management Kenneth J. Winston Frontmatter <u>More Information</u>

List of Images

1.1	(a) John D. Rockefeller, (b) Andrew Carnegie.	page 7
1.2	Probabilistic thug.	9
2.1	Twelve-fingered man.	39
3.1	US Treasury bond.	87
11.1	Bloomberg enterprise value screen.	361
11.2	Bloomberg enterprise value page for Charter.	364
12.1	Northern Rock run in 2007.	408

х

Cambridge University Press & Assessment 978-1-009-20904-5 — Quantitative Risk and Portfolio Management Kenneth J. Winston Frontmatter <u>More Information</u>

List of Figures

1.1	Concave upside utility.	page 28
1.2	Convex downside utility.	29
1.3	Kahneman's empirical decision weights $d(p)$.	35
2.1	High versus low volatility: same returns.	43
2.2	Worst 20 losses out of 1,000.	49
2.3	Isoprobability (constant <i>p</i>) curves.	58
2.4	GME short squeeze.	64
3.1	US wholesale prices.	82
3.2	Five-year US real rates, 2003-01 to 2022-08.	84
3.3	Swiss 10-year nominal rates, 2014-02 to 2022-08.	84
3.4	Seasoned 29-year 7% coupon bond price.	91
3.5	New 30-year bond duration.	93
3.6	First- and second-order approximations.	95
3.7	US yearend Treasury curves.	98
3.8	US Treasury curve, 2001-01-02.	104
3.9	Ten-year, 3-month US Treasury steepness (10.00%neg).	104
3.10	UST curve principal components.	107
3.11	Nelson-Siegel components.	108
3.12	Smoothed US Treasury and short-rate curves.	115
3.13	Hull–White curve generation.	118
3.14	Hull–White curves, monthly $\sigma = .05$ and .2.	118
4.1	Efficient frontier and inefficient portfolios.	126
4.2	Franc, pound, yen efficient frontier.	131
4.3	Long-only efficient frontier (4.13).	133
4.4	Beginning of franc, pound, yen efficient frontier.	134
4.5	Capital market line + franc, pound, yen efficient frontier.	136
4.6	Resampled minimum variance portfolios.	152
5.1	Locally convex disutility function.	165
5.2	Normal pdf-based approximation to delta function.	181
5.3	Long-only efficient frontier (like Fig. 4.3).	186
6.1	Correlation scree plot, currencies 1999-2021.	204
6.2	Marchenko–Pastur limit pdf.	205
7.1	n = 1,000 binomial vs. normal pdf.	211
7.2	Q-Q plot, CHF 1971-2021, 12,784 observations.	214
7.3	P-P plot, CHF 1971–2021, 12,784 observations.	215

xi

xii List of Figures

7.4	UK government bond long-term rates, yearend 1703–2021.	219
7.5	a. Overall view of Student's T densities. b. Left cumulative tails of Student's	
	T distributions.	222
7.6	Kurtosis of mixtures of normals.	225
7.7	a. Overall view of stable distributions. b. Left cumulative tails of stable	
	distributions.	228
7.8	Inverse standard Normal, Cauchy, and Levy.	230
7.9	Tail cdf approximations, Formula (7.30).	231
7.10	Histogram of 100-sample uniform maxima, 1,000 trials.	232
7.11	Generalized extreme value densities.	233
7.12	Block minima, CHF/USD 1971–2021, 1,278 blocks.	234
7.13	Q-Q plot, CHF 10-day max loss vs. Fréchet, 1971–2021.	235
7.14	Standard normal tails.	238
7.15	Generalized Pareto densities using (7.47).	241
7.16	cdfs of empirical, Gumbel, and fitted distributions.	242
8.1	Histogram of equal-weighted CHF+GBP+ JPY daily log-changes, 1971–2021.	248
8.2	Histogram, delta-normal.	250
8.3	Allowed parameter combinations for Cornish–Fisher.	253
8.4	SPASTT01USM661N (US).	263
8.5	SPASTT01EZM661N (Europe).	263
8.6	SPASTT01JPM661N (Japan).	264
9.1	Virtual US stocks 1926-07–2021-12, annual sigma = 18.42.	268
9.2	Actual US stocks sample std dev 1926-07-2021-12.	269
9.3	Put, call, straddle payoffs.	274
9.4	Implied volatilities, 1986–2021.	275
9.5	Moneyness skew SPX options: expiry 2022-03-18, quoted 2021-12-31,	
	compared with 2008-12-31 quotes.	276
9.6	Maturity skew ATM SPX options: strike 4775, money 4782.4502, quoted	
	2021-12-31, compared with 2008-12-31 quotes.	277
9.7	a. Time skews. b. Money skews.	278
9.8	LVM does not shift the way the market shifts.	285
9.9	Virtual VIX calculations.	289
9.10	GARCH(1,1) fit to US stock market data.	296
9.11	Merton model.	297
9.12	Pseudo-delta functions.	299
10.1	Fisher z-transform.	303
10.2	Simulated 52-week sample correlations.	308
10.3	Simulated 156-week sample correlations.	308
10.4	Historical 156-week sample correlations.	309
10.5	Seasonally adjusted US house price index 1991Q1-2022Q2.	311
10.6	US stock/bond 36-month correlations 1974-01-31 to 2021-12-31	
	(gray=insignificant).	312

List of Figures

xiii

10.7	Histogram of ATM implied vols of SPY components expiring 2022-03-18,	
	quoted 2021-12-31.	313
10.8	Cboe implied correlations COR3M.	315
10.9	GARCH(1,1) annualized standard deviation 1990-07–2021-12.	326
10.10	Historical de-GARCHed 156-week sample correlations.	328
10.11	Integrated correlations $\lambda = 0.01118, 1990-07-04:2021-12-29.$	331
10.12	Objective function as half-life changes.	332
10.13	Mean reverting correlations $\alpha = 0.01447, \beta = 0.97661, 1990-07-04:2021$ -	
	12-29.	332
11.1	Moody's corporate default rates, 1920–2021.	345
11.2	Default rates, Moody's historical 1920–2021 and Barclays' model 2009,	
	log-scale.	348
11.3	European spreads over Germany, 10-year rates.	353
11.4	Moody's smoothed yield spreads over Treasurys.	355
11.5	Term structure of Merton credit spreads, $\sigma_v^2 - 0.20$.	360
11.6	JNJ capital stack 2021Q3.	361
11.7	CHTR capital stack.	364
11.8	Correlations by decade: AAA/BBB average spd chgs versus Treasury	
	rate chgs.	372
12.1	Total bottle volume of Philippe–Ken Wine Company.	399
12.2	Philippe–Ken Wine Company profit.	400
12.3	Philippe–Ken Wine Company profit – neighborhood.	401
12.4	US swap spreads over Treasurys (by maturity).	412
12.5	Fixed payer failure mitigated by CCP.	416
12.6	a. Payoff of put plus underlying: strike = 90, $cost = 3.02$. b. Density	
1210	function with and w/out put.	424
12.7	a. Payoff of underlying minus call: strike = 110 , cost = 4.94 . b. Density	
	function with and w/out written call.	424
12.8	a. Payoff of put spread plus underlying: HighStrk = 90, HighCst = 3.02 ;	
	LowStrk = 80, LowCst = 0.96 . b. Density function with and w/out put	
	spread.	425
12.9	a. Payoff of call spread plus underlying: HighStrk = 120 , HighCst = 2.55 ;	
	LowStrk = 110, LowCst = 4.94 . b. Density function with and w/out call	
	spread.	426
12.10	a. Payoff of underlying plus straddle: Call Strike = Put Strike = 100, Call	
12.10	Cost = 8.92, Put Cost = 6.94. b. Density function with and w/out +straddle.	426
12.11	a. Payoff of underlying minus straddle: Call Strike = Put strike = 100 , Call	120
12.11	Cost = 8.92, Put $cost = 6.94$. b. Density function with and w/out -straddle.	427
12.12	a. Payoff of underlying with strangle: Call Strike = 110, Call Cost = 4.94 ,	127
	Put Strike = 90, Put Cost = 3.02 . b. Density function with and w/out strangle.	427
12.13	a. Payoff of underlying w/butterfly spread: Low = 80 , Mid = 100 ,	121
12,15	High = 100; trade $cost = 7.26$. b. Density function w/and w/out butterfly.	428
		120

xiv List of Figures

12.14	a. Payoff of underlying with ZC collar: Put Strike $=$ 90, Call Strike $=$ 118;	
	option $costs = 3.02$. b. Density function with and w/out ZC collar.	428
12.15	Theta as a function of strike price: Price = 100, $r = 0.02, T = 0.02$,	
	sigma = 0.20.	431
12.16	Gamma, vega as a function of strike price: Price = $100, r = 0.02, T = 0.25,$	
	sigma = 0.20.	431