

Continuous Groups for Physicists

The theory of groups and group representations is an important part of mathematics with applications in other areas of mathematics as well as in physics. It is basic to the study of symmetries of physical systems. Its mathematical concepts are equally significant in understanding complex physical systems. It offers the necessary tools to describe, for instance, crystal structures, elementary particles with spin, both Galilean symmetric and special relativistic quantum mechanics, the fundamental properties of canonical commutation relations and spinor representations of orthogonal groups extensively used in quantum field theory.

Continuous Groups for Physicists introduces the ideas of continuous groups and their applications to graduate students and researchers in theoretical physics. The book begins with an introduction to groups and group representations in the context of finite groups. This is followed by a chapter on the special algebraic features of the symmetric groups. The authors then present the theory of Lie groups, Lie algebras and in particular the classical families of compact simple Lie groups and their representations. Several interesting topics not often found in standard physics texts are then presented: the spinor representations of the real orthogonal groups, the real symplectic groups in even dimensions, induced representations, the Schwinger representation concept, the Wigner theorem on symmetry operations in quantum mechanics, and the Euclidean, Galilei, Lorentz and Poincaré groups associated with spacetime. The general methods and notions of quantum mechanics are used as background throughout.

Narasimhaiengar Mukunda is Adjunct Professor at the Indian Institute of Science Education and Research, Bhopal, India. He has been associated with the Tata Institute of Fundamental Research, Mumbai, and the Indian Institute of Science, Bangalore. He has co-authored six books in the area of theoretical physics. His areas of interest are classical and quantum mechanics, theoretical optics and mathematical physics.

Subhash Chaturvedi is Visiting Professor at the Indian Institute of Science Education and Research, Bhopal, India. Earlier, he was associated with the University of Hyderabad for almost three decades. He has co-authored a book on stochastic quantisation. His research interests are quantum mechanics, quantum information theory, statistical mechanics and stochastic processes.

Continuous Groups for Physicists

Narasimhaiengar Mukunda Subhash Chaturvedi

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314 to 321, 3rd Floor, Plot No.3, Splendor Forum, Jasola District Centre, New Delhi 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781009187053

© Narasimhaiengar Mukunda and Subhash Chaturvedi 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-009-18705-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In Memoriam
Sophus Lie, Elie Cartan, Hermann Weyl,
Eugene Wigner and Valentine Bargmann – who showed us the way

'Beauty is truth, truth beauty That is all ye know on earth, And all ye need to know'

- John Keats (1795-1821)

Contents

Pre	Preface			
List of Abbreviations				
1.	Basic Group Theory and Representation Theory			
	1.1	Definition of a Group	1	
	1.2	Some Examples	2	
	1.3	Operations within a Group	4	
	1.4	Operations with and Relations between Groups	8	
	1.5	Realisations and Representations of Groups	9	
	1.6	Group Representations	10	
	1.7	Equivalent Representations	11	
	1.8	Unitary/Orthogonal Cases – UR's	11	
	1.9	Matrices of a Representation	12	
	1.10	Some Operations with Group Representations	12	

x Contents

	1.11	Charac	ter of a Representation	13
	1.12		nt Subspaces, Reducibility, Irreducibility – UIR's	14
	1.13		Lemma: Proof and Applications	15
	1.14		Algebra	24
	1.15		entations of G and Its Group Algebra $\mathbb{F}[G]$	25
2.	The Sy	mmetri	c Group	27
	2.1	Cycle S	Structure Notation	27
	2.2	2 Signature of a Permutation: Alternating Subgroup		29
	2.3	Conjug	gacy Classes	30
	2.4	Young	Frames and Young Tableaux	32
	2.5	Young	Subgroups of S_n	36
	2.6	Young	Symmetrisers	37
		2.6.1	Primitive idempotence of $y_{t^{\lambda}}$	39
		2.6.2	Orthogonality properties of Young symmetrisers	41
	2.7	Irreduc	cible Representations of S_n	42
		2.7.1	Murnaghan–Nakayama rule for irreducible characters of S_n	43
		2.7.2	Symmetric functions and the irreducible characters of S_n	45
	2.8	Some U	Useful Explicit Constructions of Representations of S_n .	47
		2.8.1	$X=$ set of all Young tableaux t^{λ}	47
		2.8.2	$X=$ set of all tabloids \mathbf{t}^{λ} associated with t^{λ}	47
		2.8.3	$X = \text{set of all paratabloids } \mathbf{e}_{t^{\lambda}}$ one associated with each t^{λ}	49
3.	Rotati	ons in 2	and 3 Dimensions, SU(2)	53
	3.1	The Group $SO(2)$		
	3.2	The Group $O(2)$		
	3.3	The Gr	$\operatorname{coup} SO(3) \ldots \ldots \ldots \ldots \ldots \ldots$	56
		3.3.1	Parametrisations and topology of the $SO(3)$ manifold.	57
		3.3.2	Invariant integration over $SO(3)$	61

			Contents	xi	
		3.3.3	Some important properties of $SO(3)$ representations .	62	
		3.3.4	The UIR's of $SO(3)$	64	
		3.3.5	The <i>D</i> -matrices, orthogonality and completeness	65	
		3.3.6	Cartesian tensors	66	
	3.4	Inclusio	on of Parity – The Group $O(3)$	68	
	3.5	The Group $SU(2)$			
		3.5.1	Relation to $SO(3)$, conjugation, classes	71	
		3.5.2	Invariant integration over $SU(2)$	73	
		3.5.3	Some important properties of $SU(2)$ representations $\ .$	74	
		3.5.4	The $SU(2)$ UIR's	75	
		3.5.5	The <i>D</i> -matrices, orthogonality and completeness	76	
		3.5.6	SU(2) multispinors	77	
		3.5.7	Weyl, Jordan and Schwinger constructions	77	
4.	Genera	al Theor	ry of Lie Groups and Lie Algebras	81	
	4.1	Local C	Coordinates, Group Composition, Inverses	81	
	4.2	Associativity as a System of (Nonlinear) PDE's		85	
	4.3	One Parameter Subgroups, Canonical Coordinates of First Kind			
	4.4	Integrability Conditions, Passage to the Lie Algebra			
	4.5	Lie Algebras			
	4.6	Local Reconstruction of G from G			
	4.7	General Remarks on the $G \to G$ Relationship, Some Definitions Concerning Lie Algebras			
	4.8		entations of Lie Algebras – A Brief Look	99 102	
	4.9	-	ljoint Representation	104	
	4.10		ry	105	
5.	Comp	act Simi	ole Lie Algebras - Classification and Irreducible		
-	Representations 1				
	5.1	From a	Real Lie Algebra to Its Complexification	108	

xii Contents

	5.2	Properties of Roots and Root Space	112	
	5.3	The $SO(2l)$ Family D_l	115	
	5.4	The $SO(2l+1)$ Family B_l	118	
	5.5	The $USp(2l)$ Family C_l	119	
	5.6	The $SU(l+1)$ Family A_l	124	
	5.7	The Exceptional Groups	129	
	5.8	Representations of CSLA's	129	
	5.9	Survey of UIR's, Fundamental UIR's, Elementary UIR's	133	
	5.10	The General UIR $\{N_a\}$, Its Construction, Internal Structure,		
		Reality	139	
	5.11	Orthogonality and Completeness of UIR Matrix Elements	141	
6.	Spinor	Representations of the Orthogonal Groups	145	
	6.1	Spinor UIR's for $D_l = SO(2l)$	145	
	6.2	Spinor UIR for $B_l = SO(2l+1) \dots \dots \dots$	149	
	6.3	Conjugation Properties of Spinor UIR's	150	
	6.4	Combined Results for D_l and B_l	153	
	6.5	Some Properties of Antisymmetric Tensors	154	
7.	-	rties of Some Reducible Group Representations, and as of Generalised Coherent States	159	
	7.1	The Schwinger Representation of a Group	160	
		7.1.1 Definition of Schwinger representation	160	
		7.1.2 The $SU(2)$ case	162	
		7.1.3 The $SO(3)$ case	166	
		7.1.4 The $SU(3)$ case	167	
	7.2	Induced Representations on Coset Spaces, the Reciprocity		
		Theorem	169	
		7.2.1 The inducing construction	170	
		7.2.2 The reciprocity theorem	173	

			Contents	xiii
		7.2.3	Some Schwinger representations as induced	
			representations	173
	7.3		alised Coherent State Systems	174
		7.3.1	Coherent states for the quantum mechanical harmonic oscillator	174
		7.3.2	Coherent states within UIR's of Lie groups	176
		7.3.3	Existence of diagonal representation for operators	181
8.	Struct	ture and	Some Properties and Applications of the Groups	
	Sp(2n)	$,\mathbb{R})$		185
	8.1	The G	roup $Sp(2,\mathbb{R})$	186
		8.1.1	Generators and commutation relations in defining representation	188
		8.1.2	Quantum mechanics and the metaplectic group $Mp(2)$	189
	8.2	The G	roup $\mathit{Sp}(2n,\mathbb{R})$	193
		8.2.1	Useful subgroups of $Sp(2n,\mathbb{R})$	196
		8.2.2	Global decompositions for $Sp(2n,\mathbb{R})$	198
		8.2.3	$Sp(2n, \mathbb{R})$ Lie algebra in the defining representation and in general	200
		8.2.4	The metaplectic group $Mp(2n)$, actions on \hat{q} 's and \hat{p} 's	203
		8.2.5	The generalised Huyghens kernel in n dimensions	204
	8.3		um Variance Matrices, $Sp(2n, \mathbb{R})$ Invariant Uncertainty bles	205
	8.4	SO(2l)	Spinor UIR's and Metaplectic UR of $Sp(2n,\mathbb{R})$ – A	
		Compa	arison	208
9.	Wigne	er's Theo	orem, Ray Representations and Neutral Elements	213
	9.1	Hilber	t and Ray Space Descriptions of Pure Quantum States	214
	9.2	Wigner	r Symmetry and Unitary–Antiunitary Theorem	218

xiv Contents

	9.3	Proofs of Wigner's Theorem			
		9.3.1 Proof 1	220		
		9.3.2 Proof 2	226		
	9.4	Applications to Quantum Mechanics - Ray Representations and			
		Neutral Elements			
	9.5	Neutral Elements in Classical Mechanics	232		
10.	Grou	Groups Related to Spacetime			
	10.1	SO(3) and $SU(2)$	235		
	10.2	The Euclidean Group $E(3)$			
	10.3	The Galilei Group \mathcal{G}	245		
	10.4	Homogeneous Lorentz Group $SO(3,1)$, and $SL(2,\mathbb{C})$	252		
		10.4.1 The group $SO(3,1)$	253		
		10.4.2 The group $SL(2,\mathbb{C})$ and the connection to $SO(3,1)$.	257		
	10.5	The Poincaré Group \mathcal{P}	262		
Inde	ex		277		

Preface

It has rightly been said that the mathematical theory of groups and group representations is a magnificent gift of nineteenth century mathematics to twentieth century physics. While this is particularly true within the framework of quantum mechanics, with the passage of time its relevance within classical physics has also become well understood and greatly appreciated. Today the importance of group theoretical ideas and methods for physics can hardly be overemphasised; and over the past century or so, a veritable profusion of books devoted to this theme, many of them gems of the literature, have appeared.

The present monograph is primarily based on lectures given by one of us (NM) at the Institute of Mathematical Sciences in Chennai, India, in the Fall of 2007. The lectures were prepared and presented at the invitation of Rajiah Simon, to whom both authors are indebted for his support and encouragement.

The course was titled 'Continuous Groups for Physicists' and consisted of about 45 extended lectures over a two month period. Its aim was to introduce the basic ideas of continuous groups and some of their applications to an audience of post graduate and doctoral students in theoretical physics. After an introduction to the basic ideas of groups and group representations (mainly in the context of finite groups and compact Lie groups), the course presented a selection of useful, interesting and quite sophisticated specific topics not often included in standard courses in physics curricula. The methods and concepts of quantum mechanics served as a backdrop for all the lectures.

xvi Preface

The real rotation groups in two and three dimensions are followed by an account of the structures of Lie groups and Lie algebras, and then a description of the compact simple Lie groups. Their irreducible representations are described in some detail. Some of the 'non standard' topics that follow are: spinor representations of real orthogonal groups in both even and odd dimensions; the notion of the 'Schwinger' representation of a group with examples, induced representations, and systems of generalised coherent states; the properties and uses of the real symplectic groups, which are defined only in real even dimensions, and their metaplectic covering group, in a quantum mechanical setting; and the Wigner Theorem on the representation of symmetry operations in quantum mechanics. For the sake of completeness an account of the representation theory of the permutation groups, with its many algebraic features, has been added essentially at the beginning.

While this monograph is not intended to be a text book in the traditional sense, it is hoped that readers will find it useful in that a succinct account of the basics is followed by short accounts of the special topics mentioned above.

References have been listed at the end of each chapter. These include some classics of the literature, a few texts which we have found to be particularly well written, and in some cases a few journal publications. Some of the references appear at the conclusion of more than one chapter. Two types of references have been provided – those useful for the chapter as a whole, and those relevant at specific points in the chapter. Only the latter are indicated in the text, by author name and year of publication.

Some problems are given at the end of each chapter. To help with the more challenging ones, references to books or original papers are included.

Abbreviations

ΒI Bargmann Invariant CCR Canonical Commutation Relation Compact Simple Lie Algebra **CSLA** GCS Generalised Coherent States Irreducible Representation Irrep. Ordinary Differential Equation ODE PDE Partial Differential Equation UIR Unitary Irreducible Representation