An Introduction to Genetic Engineering
Fourth Edition

The fourth edition of this popular textbook retains its focus on the fundamental principles of gene manipulation, providing an accessible and broad-based introduction to the subject for beginning undergraduate students. It has been brought thoroughly up to date with new chapters on the story of DNA and genome editing, and new sections on bioethics, significant developments in sequencing technology and structural, functional and comparative genomics and proteomics, and the impact of transgenic plants. In addition to chapter summaries, learning objectives, concept maps, glossary and key word lists, the book now also features new concluding sections, further reading lists and webservice activities for each chapter to provide a comprehensive suite of learning resources to help students develop a flexible and critical approach to the study of genetic engineering.

Desmond S. T. Nicholl was Senior Lecturer in Biological Sciences, Head of Bioscience, Head of Quality Enhancement and Assistant Dean for Education at the University of the West of Scotland. As well as three previous editions of An Introduction to Genetic Engineering, he also authored Cell and Molecular Biology (Learning & Teaching Scotland, 2000).
'Genetic engineering represents a toolbox that all students within the basic and applied biology fields must get acquainted with. The fourth edition of *An Introduction to Genetic Engineering* is an excellent up-to-date version of a classic textbook. This ambitious book excellently balances the molecular biology knowledge required to grasp the comprehensive gene technology toolbox with a discussion of its impact on society.'

Per Amstrup Pedersen, University of Copenhagen

‘As a biomedical engineering professor teaching an undergraduate Genetic Engineering course for close to 10 years, I use Dr Nicholl’s *An Introduction to Genetic Engineering* as my go-to textbook. It is not one of those overly thick textbooks that overwhelm students. Its comprehensiveness captures readers’ attention with succinct fundamental concepts that truly promote one’s interest in exploring the wonder of many genetic engineering techniques and applications. To facilitate that further, the material provided at the end of each chapter encourages readers to expand their learning with relevant resources … Many of my students become so interested that they pursue graduate degrees and have a career in this field. Dr Nicholl’s textbook has a long-term influence on its readers.’

M. Ete Chan, State University of New York at Stony Brook

‘Dr Nicholl’s book covers all the basic material that one would expect from its title, but what particularly impressed me was how it isn’t afraid to move into political and socio-economic arenas. In Chapter 16, for example, balanced arguments are presented for and against the development of transgenic organisms, and these don’t always come out in favour of the science.’

Neil Crickmore, University of Sussex
An Introduction to Genetic Engineering
Fourth Edition

Desmond S. T. Nicholl
Contents

Preface

Part 1 Genetic Engineering in Context

Chapter 1 Introduction

Chapter 2 The Story of DNA

Chapter 3 Brave New World or Genetic Nightmare?

Part 2 The Basis of Genetic Engineering

Chapter 4 Introducing Molecular Biology

Chapter 5 The Tools of the Trade

Chapter 6 Working with Nucleic Acids

Part 3 The Methodology of Gene Manipulation

Chapter 7 Host Cells and Vectors

Chapter 8 Cloning Strategies

Chapter 9 The Polymerase Chain Reaction

Chapter 10 Selection, Screening and Analysis of Recombinants

Chapter 11 Bioinformatics

Chapter 12 Genome Editing

Part 4 Genetic Engineering in Action

Chapter 13 Investigating Genes, Genomes and ‘Otheromes’

Chapter 14 Genetic Engineering and Biotechnology

Chapter 15 Medical and Forensic Applications of Gene Manipulation
Chapter 16 | Transgenic Plants and Animals | 362

Chapter 17 | The Other Sort of Cloning | 390

Glossary | 405

Index | 439
Detailed Contents

Preface

Part 1 | Genetic Engineering in Context

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>The Story of DNA</td>
<td>16</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Brave New World or Genetic Nightmare?</td>
<td>36</td>
</tr>
</tbody>
</table>

Chapter 1 | Introduction

- **Chapter Summary**: 2
- **1.1 What Is Genetic Engineering?**: 3
- **1.2 Laying the Foundations**: 5
- **1.3 First Steps in DNA Cloning**: 6
- **1.4 Using the Web to Support Your Studies**: 8
- **1.5 Conclusion: The Breadth and Scope of Genetic Engineering**: 12

- **Further Reading**: 13
- **Websearch**: 14
- **Concept Map**: 15

Chapter 2 | The Story of DNA

- **Chapter Summary**: 16
- **2.1 How Science Works**: 17
 - **2.1.1 A Simple Model for the Scientific Method**: 23
 - **2.1.2 A More Realistic Model for How Science Works**: 24
- **2.2 DNA: A Biographical Timeline**: 25
- **2.3 People, Places and Progress: Paradigm Shifts or Step-Changes?**: 28
- **2.4 Conclusion: The Scientific Landscape**: 32

- **Further Reading**: 33
- **Websearch**: 34
- **Concept Map**: 35

Chapter 3 | Brave New World or Genetic Nightmare?

- **Chapter Summary**: 36
- **3.1 What Is Ethics?**: 37
 - **3.1.1 The Ethical Framework**: 38
 - **3.1.2 Is Science Ethically and Morally Neutral?**: 39
 - **3.1.3 The Scope of Bioethics**: 40
- **3.2 Elements of the Ethics Debate**: 42
 - **3.2.1 The Role of the Scientist**: 42
 - **3.2.2 The Role of Society**: 43
 - **3.2.3 Current Issues in Bioethics**: 43
- **3.3 Conclusion: Has Frankenstein’s Monster Escaped from Pandora’s Box?**: 46

- **Further Reading**: 47
- **Websearch**: 47
- **Concept Map**: 49
Part 2 | The Basis of Genetic Engineering

Chapter 4 | Introducing Molecular Biology 52

Chapter Summary 52

4.1 How Living Systems Are Organised 53
4.2 The Flow of Genetic Information 55
4.3 The Structure of DNA and RNA 57
4.4 Gene Organisation 60
 4.4.1 The Anatomy of a Gene 61
 4.4.2 Gene Structure in Prokaryotes 62
 4.4.3 Gene Structure in Eukaryotes 63
4.5 Gene Expression 64
 4.5.1 From Genes to Proteins 65
 4.5.2 Transcription and Translation 66
 4.5.3 Regulation of Gene Expression 67
4.6 Genes and Genomes 69
 4.6.1 Genome Size and Complexity 70
 4.6.2 Genome Organisation 71
 4.6.3 The Transcriptome and Proteome 72
4.7 Conclusion: Structure and Function 73
 Further Reading 74
 Websearch 75
 Concept Map 76

Chapter 5 | The Tools of the Trade 78

Chapter Summary 78

5.1 Restriction Enzymes – Cutting DNA 79
 5.1.1 Type II Restriction Endonucleases 80
 5.1.2 Use of Restriction Endonucleases 81
 5.1.3 Restriction Mapping 84
5.2 DNA Modifying Enzymes 84
 5.2.1 Nuclease 85
 5.2.2 Polymerses 86
 5.2.3 Enzymes That Modify the Ends of DNA Molecules 87
5.3 DNA Ligase – Joining DNA Molecules 88
5.4 Conclusion: The Genetic Engineer’s Toolkit 88
 Further Reading 90
 Websearch 91
 Concept Map 92

Chapter 6 | Working with Nucleic Acids 94

Chapter Summary 94

6.1 Evolution of the Laboratory 95
6.2 Isolation of DNA and RNA 99
6.3 Handling and Quantification of Nucleic Acids 100
6.4 Labelling Nucleic Acids

6.4.1 Types of Label – Radioactive or Not? 102
6.4.2 End Labelling 103
6.4.3 Nick Translation 104
6.4.4 Labelling by Primer Extension 104

6.5 Nucleic Acid Hybridisation 106

6.6 Gel Electrophoresis 108

6.7 DNA Sequencing: The First Generation

6.7.1 Principles of First-Generation DNA Sequencing 111
6.7.2 Sanger (Dideoxy or Enzymatic) Sequencing 112
6.7.3 Electrophoresis and Reading of Sequences 112
6.7.4 Automation and Scale-Up of DNA Sequencing 114

6.8 Next-Generation Sequencing Technologies 115

6.8.1 NGS – A Step-Change in DNA Sequencing 116
6.8.2 Principles of NGS 116
6.8.3 NGS Methodologies 119

6.9 Conclusion: Essential Techniques and Methods 127

Further Reading 129
Websearch 129
Concept Map 131

Part 3 | The Methodology of Gene Manipulation

Chapter 7 | Host Cells and Vectors 134

Chapter Summary 134

7.1 Types of Host Cell 135

7.1.1 Prokaryotic Hosts 136
7.1.2 Eukaryotic Hosts 136

7.2 Plasmid Vectors for Use in E. coli 137

7.2.1 What Are Plasmids? 137
7.2.2 Basic Cloning Plasmids 138
7.2.3 Slightly More Exotic Plasmid Vectors 139

7.3 Bacteriophage Vectors for Use in E. coli 141

7.3.1 What Are Bacteriophages? 141
7.3.2 Vectors Based on Bacteriophage λ 145
7.3.3 Vectors Based on Bacteriophage M13 147

7.4 Other Vectors 148

7.4.1 Hybrid Plasmid/Phage Vectors 148
7.4.2 Vectors for Use in Eukaryotic Cells 149
7.4.3 Artificial Chromosomes 150

7.5 Getting DNA into Cells 152

7.5.1 Transformation and Transfection 152
7.5.2 Packaging Phage DNA In Vitro 153
7.5.3 Alternative DNA Delivery Methods 154

7.6 Conclusion: From In Vitro to In Vivo 156

Further Reading 157
Websearch 157
Concept Map 159
Chapter 8 | Cloning Strategies

Chapter Summary
160

8.1 Which Approach Is Best?
161

- **8.1.1 Cloning in the Pre-genomic Era**
162
- **8.1.2 Cloning (or Not) in the Genomic and Post-genomic Eras**
162

8.2 Generating DNA Fragments for Cloning
165

- **8.2.1 Genomic DNA**
165
- **8.2.2 Synthesis of cDNA**
165
- **8.2.3 PCR Fragments**
168
- **8.2.4 Synthetic Biology: Making Genes from Scratch**
168

8.3 Inserting DNA fragments into Vectors
169

- **8.3.1 Ligation of Blunt/Cohesive-Ended Fragments**
169
- **8.3.2 Homopolymer Tailing**
170
- **8.3.3 Linkers and Adapters**
170
- **8.3.4 Other Methods for Joining DNA Fragments and Vectors**
173

8.4 Putting It All Together
175

- **8.4.1 Cloning in a \(\lambda\) Replacement Vector**
176
- **8.4.2 Expression of Cloned cDNA Molecules**
177
- **8.4.3 Cloning Large DNA Fragments in BAC and YAC Vectors**
178
- **8.4.4 Gateway Cloning Technology**
180
- **8.4.5 Golden Gate Cloning and Assembly**
180
- **8.4.6 The Gibson Assembly Method**
183

8.5 Conclusion: Designing a Cloning Strategy
184

Further Reading
184

Websearch
185

Concept Map
186

Chapter 9 | The Polymerase Chain Reaction

Chapter Summary
188

9.1 History of the PCR
189

9.2 The Methodology of the PCR
190

- **9.2.1 Essential Features of the PCR**
190
- **9.2.2 Designing Primers for the PCR**
192
- **9.2.3 DNA Polymerases for the PCR**
194

9.3 More Exotic PCR Techniques
195

- **9.3.1 PCR Using mRNA Templates**
195
- **9.3.2 Nested PCR**
198
- **9.3.3 Inverse PCR**
199
- **9.3.4 Quantitative and Digital PCR**
199
- **9.3.5 RAPD and Several Other Acronyms**
202

9.4 Processing and Analysing PCR Products
205

9.5 Conclusion: The Game-Changing Impact of the PCR
205

Further Reading
206

Websearch
207

Concept Map
208
Chapter 10
Selection, Screening and Analysis of Recombinants

10.1 Genetic Selection and Screening Methods
- **10.1.1** Use of Chromogenic Substrates
- **10.1.2** Insertional Inactivation
- **10.1.3** Complementation of Defined Mutations
- **10.1.4** Other Genetic Selection Methods

10.2 Screening Using Nucleic Acid Hybridisation
- **10.2.1** Nucleic Acid Probes
- **10.2.2** Screening Clone Banks

10.3 Use of the PCR in Screening Protocols

10.4 Immunological Screening for Expressed Genes

10.5 Analysis of Cloned Genes
- **10.5.1** Restriction Mapping
- **10.5.2** Blotting Techniques
- **10.5.3** Sub-cloning
- **10.5.4** DNA Sequencing

10.6 Conclusion: Needles in Haystacks

Chapter 11
Bioinformatics

11.1 What Is Bioinformatics?
- **11.1.1** Computing Technology
- **11.1.2** The Impact of the Internet and World Wide Web

11.2 Biological Data Sets
- **11.2.1** Generation and Organisation of Information
- **11.2.2** Primary and Secondary Databases
- **11.2.3** Nucleic Acid Databases
- **11.2.4** Protein Databases
- **11.2.5** Other Bioinformatics Resources

11.3 Using Bioinformatics as a Tool
- **11.3.1** Avoiding the ‘GIGO’ Effect – Real Experiments
- **11.3.2** Avoiding the Test Tube – Computational Experimentation
- **11.3.3** Presentation of Database Information

11.4 Conclusion: Bioscience and ‘Big Data’

Chapter 12
Genome Editing

12.1 Gene Targeting

12.2 Genome Editing Using Engineered Nucleases
- **12.2.1** Zinc-Finger Nucleases
12.2.2 TALENs
12.2.3 The CRISPR-Cas9 System
12.2.4 Prime Editing

12.3 Editing RNA as an Option
12.4 Where Can Genome Editing Take Us?
12.5 Conclusion: From Genome Read to Genome Write

Further Reading
Websearch
Concept Map

Part 4 Genetic Engineering in Action

Chapter 13 Investigating Genes, Genomes and ‘Otheromes’

Chapter Summary

13.1 Analysis of Gene Structure and Function
13.1.1 A Closer Look at Sequences
13.1.2 Finding Important Regions of Genes
13.1.3 Investigating Gene Expression

13.2 Understanding Genomes
13.2.1 Analysing and Mapping Genomes
13.2.2 An Audacious Idea
13.2.3 The Human Genome Project
13.2.4 Other Genome Projects

13.3 ‘Otheromes’
13.3.1 The Transcriptome
13.3.2 The Proteome
13.3.3 Metabolomes, Interactomes and More

13.4 Life in the Post-genomic Era
13.4.1 Structural Genomics and Proteomics
13.4.2 Functional Genomics
13.4.3 Comparative Genomics

13.5 Conclusion: The Central Role of the Genome

Further Reading
Websearch
Concept Map

Chapter 14 Genetic Engineering and Biotechnology

Chapter Summary

14.1 Making Proteins
14.1.1 Native and Fusion Proteins
14.1.2 Yeast Expression Systems
14.1.3 The Baculovirus Expression System
14.1.4 Mammalian Cell Lines

14.2 Protein Engineering
14.2.1 Rational Design
14.2.2 Directed Evolution
14.3 From Laboratory to Production Plant
14.3.1 Thinking Big – The Biotechnology Industry
14.3.2 Production Systems
14.3.3 Scale-Up Considerations
14.3.4 Downstream Processing

14.4 Examples of Biotechnological Applications of rDNA Technology
14.4.1 Production of Enzymes
14.4.2 The BST Story
14.4.3 Therapeutic Products for Use in Human Healthcare
14.4.4 Meeting the COVID-19 Challenge

14.5 Conclusion: Industrial-Scale Biology

Further Reading
Websearch
Concept Map

Chapter 15 Medical and Forensic Applications of Gene Manipulation

Chapter Summary

15.1 Diagnosis and Treatment of Medical Conditions
15.1.1 Diagnosis of Infection
15.1.2 Patterns of Inheritance
15.1.3 Genetically Based Disease Conditions
15.1.4 Investigating Disease Alleles Using Comparative Genomics
15.1.5 Vaccine Development Using rDNA
15.1.6 Therapeutic Antibodies
15.1.7 Xenotransplantation

15.2 Treatment Using rDNA Technology – Gene Therapy
15.2.1 Getting Transgenes into Patients
15.2.2 Gene Therapy for Adenosine Deaminase Deficiency
15.2.3 Gene Therapy for Cystic Fibrosis
15.2.4 What Does the Future Hold for Gene Therapy?

15.3 RNA Interference
15.3.1 What Is RNAi?
15.3.2 Using RNAi as a Tool for Studying Gene Expression
15.3.3 RNAi as a Potential Therapy
15.3.4 Antisense Oligonucleotides

15.4 Medical Applications of Genome Editing
15.4.1 Disease Targets for Genome Editing
15.4.2 Sickle-Cell Success
15.4.3 CRISPR-Cas9 – CAR T-Cell Therapies in Cancer Treatment
15.4.4 The CCR5 Controversy

15.5 DNA Profiling
15.5.1 The History of ‘Genetic Fingerprinting’
15.5.2 DNA Profiling and the Law
15.5.3 Mysteries of the Past Revealed by Genetic Detectives

15.6 Conclusion: rDNA in Diagnosis, Analysis and Treatment

Further Reading
Websearch
Concept Map
Chapter 16 | Transgenic Plants and Animals

Chapter Summary
16.1 A Complex Landscape
16.2 Transgenic Plants
 16.2.1 Why Transgenic Plants?
 16.2.2 Making Transgenic Plants
 16.2.3 Putting the Technology to Work
 16.2.4 Have Transgenic Plants Delivered or Disappointed?
16.3 Transgenic Animals
 16.3.1 Why Transgenic Animals?
 16.3.2 Producing Transgenic Animals
 16.3.3 Applications of Transgenic Animal Technology
16.4 Future Trends
 16.4.1 Transgenesis or Genome Editing?
 16.4.2 Gene Drives
16.5 Conclusion: Changing Genomes and Attitudes

Chapter 17 | The Other Sort of Cloning

Chapter Summary
17.1 Early Thoughts and Experiments
 17.1.1 First Steps towards Cloning
 17.1.2 Nuclear Totipotency
17.2 Frogs and Toads and Carrots
17.3 A Famous Sheep – The Breakthrough Achieved
17.4 Beyond Dolly
 17.4.1 Potential Unfulfilled?
 17.4.2 The Future of Organismal Cloning
17.5 Conclusion: From Genome to Organism

Glossary
Index
Preface

Advances in genetics continue to be made at an ever increasing rate, which presents something of a dilemma when writing an introductory text on the subject. In the years since the third edition was published, many new applications of gene manipulation technology have been developed; genome sequencing has become available at bench-top scale and cost, and gene editing can be achieved using very modest laboratory infrastructure. Personal genome profiling is available from a range of companies, and genetic technology has played a major role in managing many aspects of the COVID-19 pandemic, from diagnostic testing to rapid development of safe and effective vaccines.

Information technology resources, coupled with the internet and World Wide Web, have been critical parts of all these developments, providing tools for the analysis of DNA sequences and instant sharing of data across the globe. At the same time, a level of mistrust has developed among some sections of society, largely driven by misinformation on social media channels, which has illustrated the power of the internet in a less positive way. It is against this background that some themes began to emerge for the fourth edition, reflecting the aim of encouraging students to use the excellent resources on the web, whilst retaining a level of critical assessment of the information. Aspects around the ethics of using genetic technology are perhaps now even more important than before, so these are discussed early in the text to enable the applications to be placed within an appreciation of the ethical framework.

Whilst aiming for a slight broadening in scope, I remain convinced that a basic technical introduction to the subject should be the major focus of the text. Thus, some of the original methods used in gene manipulation have been kept as examples of how the technology developed, even though some of these have become little used or even obsolete. From the educational point of view, this should help the reader cope with more advanced information about the subject, as a sound grasp of the basic principles is an important part of any introduction to genetic engineering. I have been gratified by the many positive comments about the third edition of the text, and I hope that this new edition continues to serve a useful purpose as part of the introductory literature on this fascinating subject.

This book is organised as four parts. Part 1 (Genetic Engineering in Context; Chapters 1–3) sets the scene and brings the discussion of the ethical issues around DNA technology to the start of the book. Part 2 (The Basis of Genetic Engineering; Chapters 4–6) provides an introduction to molecular biology and outlines the tools available to the genetic engineer, and Part 3 (The Methodology of Gene Manipulation; Chapters 7–12) extends this theme further by examining how these tools enable...
sophisticated experiments and procedures to be carried out. Finally, in
Part 4 (Genetic Engineering in Action; Chapters 13–17), we look at the
impact of DNA technology across a range of key areas.

In the fourth edition, I have expanded the range of features that
should be useful as study aids where the text is used to support a
particular academic course. In the book, there are text boxes sprinkled
throughout the chapters. These highlight key points on the way
through the text, and can be used as a means of summarising the
content. At the start of each chapter, the aims of the chapter are
presented, along with a chapter summary in the form of learning object-
ives. These have been written quite generally, so that an instructor can
modify them to suit the level of detail required. A list of the key words
in each chapter is also provided for reference. These are shown as bold
in the text; terms in blue can also be found in the Glossary. A new
addition to the end of each chapter is a websearch page that provides
some structured web-based search exercises that help to set the chap-
ter in context and act as a start point for further study using the
resources available online. As in previous editions, a concept map has
been generated for each chapter, showing how the main topics are
linked. The concept maps provided here are essentially summaries of
the chapters, and may be examined either before or after reading the
chapter.

As this remains an introductory text, no in-text reference has been
made to the primary (research) literature, but some suggestions for
further reading are given at the end of each chapter. Most of these are
available in open-access format or may be available through an insti-
tution’s library subscription service. A glossary of terms used has also
been provided.

A new development for the fourth edition is a set of online resources
at www.cambridge.org/nicholl4. This provides access to a range of
materials from the book (and additional information) that I hope will
be useful in building a learning system to suit your preferred learning
style. The resources have been provided in electronic format as a study
guide to enable collation into a set of student-generated notes.

My thanks go to the anonymous (but appreciated) reviewers of the
proposal and the early versions of the manuscript. Their comments
and suggestions have made the book better; any errors of fact or
interpretation of course remain my own responsibility. Special thanks
to Megan Keirman, Susan Francis, Helen Shannon and Rachel Norridge
at Cambridge University Press, and to Joyce Cheung, for their cheerful
advice, support, encouragement and patience, which helped bring the
project to its conclusion.

My final and biggest thank you goes as ever to my wife Linda and to
Charlotte, Thomas and Anna, who have grown up along with the
various editions of ‘IGE’. I dedicate this new edition to them.