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Introduction and Overview

This book provides a self-contained guide to probability and statistics, and their application
to data science. We present probability theory intertwined with statistics, as opposed to first
covering probability and then statistics, as in most existing texts. The goal is to highlight the
connections between probabilistic concepts and the statistical techniques used to estimate
them from data. Throughout the text, and from the very beginning, computational examples
illustrate the application of the material to real-world data, extracted from the datasets listed
in the Appendix. Code in Python reproducing these examples is available on the book web-
site (www.ps4ds.net). The website also contains additional supporting material, including
videos, slides, and solutions to all exercises. In the remainder of this section, we provide an
overview of the contents of each chapter.

Chapter 1 introduces probability. We begin with an informal definition, which enables
us to build intuition about the properties of probability. Then, we present a more rigorous
definition, based on the mathematical framework of probability spaces. Next, we describe
conditional probability, which makes it possible to update probabilities when additional
information is revealed. In our first encounter with statistics, we explain how to estimate
probabilities and conditional probabilities from data, as illustrated by an analysis of votes
in the United States Congress. Building upon the concept of conditional probability, we
define independence and conditional independence, which are critical concepts in proba-
bilistic modeling. The chapter ends with a surprising twist: In practice, probabilities are often
impossible to compute analytically! Fortunately, the Monte Carlo method provides a prag-
matic solution to this challenge, allowing us to approximate probabilities very accurately
using computer simulations. We apply the method to model a 3x3 basketball tournament
from the 2020 Tokyo Olympics.

Chapter 2 introduces random variables, and explains how to use them to model uncer-
tain numerical quantities that are discrete. We first provide a mathematical definition of
random variables, building upon the framework of probability spaces. Then, we explain how
to manipulate discrete random variables in practice, using their probability mass function
(pmf), and describe the main properties of the pmf. Motivated by an example where we
analyze Kevin Durant’s free-throw shooting, we define the empirical pmf, a nonparametric
estimator of the pmf that does not make strong assumptions about the data. Next, we define
several popular discrete parametric distributions (Bernoulli, binomial, geometric, and Pois-
son), which yield parametric estimators of the pmf, and explain how to fit them to data via
maximum-likelihood estimation. We conclude the chapter by comparing the advantages and
disadvantages of nonparametric and parametric models, illustrated by a real-data example,
where we model the number of calls arriving at a call center.
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2 Introduction and Overview

Chapter 3 introduces continuous random variables, which enable us to model uncer-
tain continuous quantities. We again begin with a formal definition, but quickly move on to
describe how to manipulate continuous random variables in practice. We define the cumula-
tive distribution function and quantiles (including the median), and explain how to estimate
them from data. We then introduce the concept of probability density and describe its main
properties. We present two approaches to obtain nonparametric models of probability densi-
ties from data: The histogram and kernel density estimation. Next, we define two celebrated
continuous parametric distributions – the exponential and the Gaussian – and show how to
fit them to data using maximum-likelihood estimation. We use these distributions to model
the interarrival time of calls at a call center, and height in a population, respectively. Finally,
we discuss how to simulate continuous random variables via inverse transform sampling.

Chapter 4 describes how to jointly model the interactions between several uncertain dis-
crete quantities. Mathematically, this is achieved by representing the quantities as multiple
discrete random variables within the same probability space. In practice, such variables
are characterized using their joint pmf. We explain how to estimate the joint pmf from data
and use it to model precipitation at three locations in Oregon. Then, we introduce marginal
and conditional distributions, utilizing the real-world Oregon precipitation data as a run-
ning example. Marginal distributions describe the individual behavior of each variable in a
model. Conditional distributions describe the behavior of a variable, when the values of
other variables are fixed. Next, we generalize the concepts of independence and condi-
tional independence to random variables. At this point, we discuss the problem of causal
inference, which seeks to identify causal relationships between variables. Causal inference
enables us to understand why a relatively unknown NBA player can have a better three-point
shooting percentage than the best shooter in history. We then turn our attention to a funda-
mental challenge in statistics and data science: It is impossible to completely characterize the
dependence between the variables of a probabilistic model, unless they are very few. This
phenomenon, known as the curse of dimensionality, is the reason why independence and
conditional independence assumptions are needed to make probabilistic models tractable.
We conclude the chapter by describing two popular models based on such assumptions:
Naive Bayes and Markov chains.

In Chapter 5 we describe how to jointly model continuous quantities, by representing them
as multiple continuous random variables within the same probability space. We define the
joint cumulative distribution function and the joint probability density function, and explain
how to estimate the latter from data using a multivariate generalization of kernel density
estimation. Next, we introduce marginal and conditional distributions of continuous vari-
ables and also discuss independence and conditional independence. Throughout, we model
real-world temperature data as a running example. Then, we explain how to jointly simulate
multiple random variables, in order to correctly account for the dependence between them.
Finally, we define Gaussian random vectors, which are the most popular multidimensional
parametric models for continuous data, and apply them to model anthropometric data.

Chapter 6 discusses how to build probabilistic models that include both discrete and con-
tinuous variables. Mathematically, this is achieved by defining them as random variables
within the same probability space. In practice, the variables are manipulated using their
marginal and conditional distributions. We define the conditional pmf of a discrete random
variable given a continuous variable, and the conditional probability density of a continuous
random variable given a discrete variable. We use these objects to build mixture models and
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Introduction and Overview 3

apply them to model height in a population. Next, we describe Gaussian discriminant analy-
sis, a classification method based on mixture models with Gaussian conditional distributions,
and apply it to diagnose Alzheimer’s disease. Then, we explain how to perform clustering
using Gaussian mixture models and leverage the approach to cluster NBA players. Finally,
we introduce the framework of Bayesian statistics, which enables us to explicitly encode our
uncertainty about model parameters, and use it to analyze poll data from the 2020 United
States presidential election.

Chapter 7 focuses on averaging, which is a fundamental operation in probability and
statistics. We begin by defining an averaging procedure for random variables, known as the
mean. We show that the mean is linear, and also that the mean of the product of independent
variables equals the product of their means. Then, we derive the mean of popular parametric
distributions. Next, we caution that the mean can be severely distorted by extreme values,
as illustrated by an analysis of NBA salaries. In addition, we define the mean square, which
is the average squared value of a random variable, and the variance, which is the mean
square deviation from the mean. We explain how to estimate the variance from data and use
it to describe temperature variability at different geographic locations. Then, we define the
conditional mean, which represents the average of a variable when other variables are fixed.
We prove that the conditional mean is an optimal solution to the problem of regression,
where the goal is to estimate a quantity of interest as a function of other variables. We end
the chapter by studying how to estimate average causal effects, motivated by two real-world
causal-inference questions: Do all-caps titles attract more views on YouTube? and Do private
lessons improve students’ grades?

Chapter 8 focuses on correlation, a key metric in data science, which quantifies to what
extent two quantities are linearly related. We begin by defining the correlation between nor-
malized and centered random variables. Then, we generalize the definition to all random
variables and introduce the concept of covariance, which measures the average joint varia-
tion of two random variables. Next, we explain how to estimate correlation from data and
analyze the correlation between the height of NBA players and different basketball stats.
In addition, we study the connection between correlation and simple linear regression. We
then discuss the differences between uncorrelation and independence. In order to gain better
intuition about the properties of correlation, we provide a geometric interpretation of corre-
lation, where the covariance is an inner product between random variables. Finally, we show
that correlation does not imply causation, as illustrated by the spurious correlation between
temperature and unemployment in Spain.

Chapter 9 explains how to estimate population parameters from data. As running exam-
ples, we consider the problems of estimating the mean height in a population and the
prevalence of COVID-19 in New York City. We begin by introducing random sampling,
a simple yet powerful approach that enables us to obtain accurate estimates from limited
data. We then define the bias and the standard error, which quantify the average error of
an estimator and how much it varies, respectively. In order to gain a deeper understanding
of the properties of random sampling, we derive deviation bounds, which characterize the
probabilistic behavior of a random variable just based on its mean and variance. We use
these bounds to prove the celebrated law of large numbers, which states that averaging many
independent samples from a distribution yields an accurate estimate of its mean. An impor-
tant consequence of this law is that random sampling provides an arbitrarily precise estimate
of means and proportions, as the number of data grows. However, we also caution that this is
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4 Introduction and Overview

not necessarily the case, if the underlying data contain extreme values, as demonstrated by
a real-world economic dataset. Next, we discuss another fundamental mathematical phe-
nomenon, the central limit theorem (CLT), according to which averages of independent
quantities tend to have Gaussian distributions. We again provide a cautionary tale, inspired
by the 2008 Financial Crisis, warning that the CLT does not hold in the absence of indepen-
dence. Then, we explain how to use the CLT to build confidence intervals, which quantify
the uncertainty of estimates obtained from finite data. Finally, we introduce the bootstrap, a
popular computational technique to estimate standard errors and build confidence intervals.

Chapter 10 presents the framework of hypothesis testing, which can be used to evaluate
whether the available data provide sufficient evidence to support a certain hypothesis. We
consider two questions as running examples: Is a toy die unfair? and Is Giannis Antetokoun-
mpo’s free-throw shooting worse in away games than in home games? The main idea behind
hypothesis testing is to play devil’s advocate and assume a null hypothesis, which contra-
dicts our hypothesis of interest. We explain how to use parametric modeling to implement
this idea and define the p-value. A small p-value indicates that the data cannot be explained
by the null hypothesis, which is evidence in favor of the original hypothesis. We prove that
thresholding the p-value is guaranteed to control the probability of endorsing a false find-
ing. In addition, we define the power of a test, which quantifies the test’s ability to identify
positive findings. Next, we show how to perform hypothesis testing without a parametric
model, focusing on the permutation test. Then, we discuss multiple testing, a setting of great
practical interest where many tests are performed simultaneously. Using real data from NBA
players, we demonstrate that avoiding false findings in such situations is very challenging,
but can be achieved by adjusting the p-value threshold. To end the chapter, we provide three
reasons why hypothesis testing should not be used as the only stamp of approval for scientific
discoveries. First, hypothesis testing does not necessarily identify causal effects; it is com-
plementary to causal inference. Second, small p-values do not imply practical significance.
Third, relying on p-values to validate findings produces a strong incentive to cherry-pick
results, a practice known as p-hacking.

Chapter 11 covers principal component analysis and low-rank models, which are
popular techniques to process high-dimensional datasets with many features. We begin by
defining the mean of random vectors and random matrices. Then, we introduce the covari-
ance matrix, which encodes the variance of any linear combination of the entries in a random
vector, and explain how to estimate it from data. We model the geographic location of Cana-
dian cities as a running example. Next, we present principal component analysis (PCA), a
method to extract the directions of maximum variance in a dataset. We explain how to use
PCA to find optimal low-dimensional representations of high-dimensional data, and apply it
to a dataset of human faces. Then, we introduce low-rank models for matrix-valued data and
describe how to fit them using the singular-value decomposition. We show that this approach
is able to automatically identify meaningful patterns in real-world weather data. Finally, we
explain how to estimate missing entries in a matrix under a low-rank assumption and apply
this methodology to predict movie ratings via collaborative filtering.

Chapter 12 delves deeper into the problems of regression and classification, where the
goal is to estimate a certain quantity of interest (the response) from observed features. In
regression, the response is modeled as a numerical variable. In classification, the response
belongs to a finite set of predetermined classes. We begin with a comprehensive descrip-
tion of linear regression models, which are ubiquitous in data science and statistics, because
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Introduction and Overview 5

of their simplicity and interpretability. As a running example, we build a linear model of
premature mortality in United States counties. Then, we discuss how to leverage linear
regression to perform causal inference. In addition, we explain under what conditions linear
models tend to overfit, and under what conditions they generalize robustly to held-out data.
Motivated by the threat of overfitting, we introduce the concept of regularization. First, we
provide a theoretical analysis of �2-norm regularization (a.k.a. ridge regression) and show
that it can mitigate overfitting in practice. Second, we explain how to leverage �1-norm reg-
ularization (a.k.a. the lasso) to perform sparse regression, where the goal is to fit a linear
model that only depends on a small subset of the available features. Next, we introduce two
popular linear models for binary and multiclass classification: Logistic and softmax regres-
sion. We apply these methods to several classification tasks involving real data: Diagnosis
of Alzheimer’s disease, digit recognition, and identification of wheat varieties. At this point,
we turn our attention to nonlinear models, which are cornerstones of modern machine learn-
ing. First, we present regression and classification trees and explain how to combine them
to build complex nonlinear models via bagging, random forests, and boosting. Second, we
describe the framework of deep learning and explain how to train neural networks to perform
regression and classification. Finally, we end the chapter (and the book) by discussing how
to evaluate classification models.
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1

Probability

Overview

Who will win the next presidential election? What will be the price of a certain stock tomor-
row? Will the New York Knicks win the NBA championship next season? There is no definite
answer to these questions, because they pertain to uncertain phenomena with different
possible outcomes. To describe an uncertain phenomenon, we interpret it as a repeatable
experiment, which enables us to define the probability of different events associated with
the phenomenon. This simple idea is a fundamental underpinning of statistics and data sci-
ence. In Section 1.1, we provide an intuitive definition of probability and describe its main
properties. Building upon this intuition, Section 1.2 introduces the mathematical framework
of probability spaces. Section 1.3 defines conditional probability, which allows us to update
probabilities when additional information is revealed. In Section 1.4, we explain how to
estimate probabilities from data. Sections 1.5 and 1.6 introduce the key concepts of indepen-
dence and conditional independence, respectively. Finally, Section 1.7 describes the Monte
Carlo method, which enables us to approximate probabilities using computer simulations.

1.1 Intuitive Properties of Probability

In order to define probabilities associated with an uncertain phenomenon, we interpret the
phenomenon as an experiment with multiple possible outcomes. The set of all possible out-
comes is called the sample space, usually denoted by Ω. As the following examples show,
the sample space can be discrete or continuous.

Example 1.1 (Die roll: sample space). If we roll a six-sided die, there are six possible results
that are mutually exclusive (the die cannot land on two numbers at the same time). These six
outcomes form the sample space Ω := {1, 2, 3, 4, 5, 6} associated with the die roll. In this
case, the sample space is a finite set.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1.2 (Rolling a die until it lands on a six: sample space). Imagine that we roll a
six-sided die repeatedly until it lands on a six. Modeling the outcomes for this situation is
not as straightforward as in Example 1.1. If we are just interested in the number of rolls that
occur, we can set the outcome to equal that number. In that case, the sample space is the
set of natural numbers Ω1 := N. If we are interested in the actual values of the rolls, then
we can set the outcome to equal the sequence of rolls (e.g. if we roll a four, a one, and a
six, the outcome is 4 → 1 → 6). The sample space Ω2 is then the (infinite) set of all such
sequences. Either way, the sample space is discrete, but countably infinite.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1.1 Intuitive Properties of Probability 7

Example 1.3 (Weather in New York: sample space). If we want to model the weather in
New York, then there are a lot of choices to make! To simplify matters, let us assume that
we are only interested in the temperature in Washington Square Park at noon. We define the
outcome to be that temperature, represented as a real number. The sample space containing
all possible outcomes is the real line Ω := R.1 In this case, the sample space is continuous,
and the number of outcomes is uncountable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Once we have defined the sample space, we quantify the uncertainty about our phe-
nomenon of interest by determining how likely it is for the outcome to belong to different
subsets of the sample space. We call these subsets events. Events can consist of several out-
comes, a single outcome, the whole sample space, or no outcomes at all. An event occurs
when the outcome of the experiment belongs to the event, as illustrated by the following
examples.

Example 1.4 (Die roll: events). Possible events associated with the sample space in
Example 1.1 include:

• Rolling a five, A := {5}.
• Rolling an even number, B := {2, 4, 6}.
• Rolling any number, C := {1, 2, 3, 4, 5, 6}.

If the roll is a four, then events B and C occur, but A does not.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1.5 (Rolling a die until it lands on a six: events). In Example 1.2, the structure
of the events depends on the choice of sample space. For example, the event Rolling twice
to obtain a six contains a single outcome {2}, if the sample space is Ω1, and five outcomes
(1 → 6, 2 → 6, 3 → 6, 4 → 6, 5 → 6), if the sample space is Ω2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1.6 (Weather in New York). If we model the temperature in Washington Square
Park at noon and fix the sample space to be the real numbers (Ω := R), then possible events
include:

• The temperature is above 30◦, A := [30,∞).
• The temperature is equal to 35◦, B := 35.
• The temperature is any number, C := R.

If the temperature turns out to be 40◦, then A and C occur, but B does not.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to quantify how likely an event is, we assign it a number, which we call a probabil-
ity. The key idea behind the concept of probability is to interpret the uncertain phenomenon
of interest as an experiment, which can be repeated over and over. Of course, this is just an
abstraction. Many uncertain phenomena, such as the next presidential election, will occur
only once. However, thinking of them as repeatable experiments enables us to quantify our
uncertainty about them. The probability P(A) of an event A represents the fraction of times
that the event occurs (i.e., the outcome of the experiment belongs to the event), when we
repeat the experiment an arbitrarily large number of times:

1 Strictly speaking, temperatures cannot be lower than absolute zero, but we use the whole real line for
convenience.
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8 1 Probability

P(event) :=
times event occurs

total repetitions
. (1.1)

Notice that the probability is between zero and one because the number of times the event
occurs must be between zero and the total number of repetitions. This is an informal defi-
nition of probability, which enables us to build intuition about its properties. We provide a
formal definition in Section 1.2.

When determining the probabilities associated with a sample space, we do not need to
assign a probability to every subset of the sample space. In fact, when the sample space is
continuous, it is usually not possible to do this in a consistent manner. We refer the interested
reader to any textbook on measure theory for more details. In any case, we definitely want to
assign probabilities to some events. In the remainder of this section, we discuss what these
events should be and derive their associated probabilities using our informal definition of
probability.

1.1.1 Probability of the Sample Space

We should definitely assign a probability to the event that anything at all happens. This event
contains all possible outcomes, so it is equal to the sample space Ω. Every time we repeat
the experiment, we obtain an outcome that must be in Ω, so by our informal definition of
probability,

P (Ω) =
times Ω occurs

total repetitions
(1.2)

=
total repetitions

total repetitions
(1.3)

= 1. (1.4)

Therefore, the probability assigned to the sample space should always equal one.

1.1.2 Probability of Unions and Intersections of Events

If we assign a probability to two events, we should also assign probabilities to their union and
intersection. The union of two events is the event that either of them occurs. The intersection
of two events is the event that both of them occur simultaneously. We begin by considering
disjoint events, which are events that do not have any outcomes in common, so their inter-
section is empty. In Example 1.4, the events A and B are disjoint because no outcome is in
both events, but A and C are not disjoint because the outcome 5 belongs to both of them. If
two events D1 and D2 are disjoint, our informal definition of probability implies

P (D1 ∪D2) =
timesD1 orD2 occur

total repetitions
(1.5)

=
timesD1 occurs + timesD2 occurs

total repetitions
(1.6)

=
timesD1 occurs

total repetitions
+

timesD2 occurs

total repetitions
(1.7)

= P(D1) + P (D2) . (1.8)

Therefore, the probability of the union of disjoint events should equal the sum of their
individual probabilities.
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1.2 Mathematical Definition of Probability 9

If two events E1 and E2 are not disjoint, then their intersection is not empty. As a result,
according to our informal definition, the probability of their union equals

P (E1 ∪ E2) =
times E1 or E2 occur

total repetitions
(1.9)

=
times E1 occurs + times E2 occurs − times E1 and E2 occur

total repetitions

=
times E1 occurs

total repetitions
+

times E2 occurs

total repetitions
− times E1 and E2 occur

total repetitions

= P (E1) + P (E2)− P (E1 ∩ E2) . (1.10)

We subtract the probability of the intersection to avoid counting its outcomes twice.
From (1.10) we obtain a formula for the probability of the intersection of two events:

P (E1 ∩ E2) = P (E1) + P (E2)− P (E1 ∪ E2) . (1.11)

1.1.3 Probability of the Complement of an Event

If we assign a probability to an event, we should also assign a probability to its complement,
that is, to the event not occurring. Mathematically, the complement is the set of all the
outcomes that are not in the event. In Example 1.4, the complement of A is {1, 2, 3, 4, 6}
and the complement of B is {1, 3, 5}. For any event E, the union of E and its complement
Ec is equal to the whole sample space (every outcome is either in E or in its complement).
In addition, E and Ec are disjoint by definition (no outcome can be in both events). By our
informal definition of probability, this implies

P (E) + P (Ec) = P (E ∪ Ec) (1.12)

= P(Ω) (1.13)

= 1, (1.14)

so to compute the probability of the complement of E, we just need to subtract its probability
from one, P (Ec) = 1 − P (E). An intuitive consequence is that if an event is very likely
(probability close to one), its complement should be unlikely (probability close to zero), and
vice versa.

1.2 Mathematical Definition of Probability

In this section, we present the mathematical framework of probability spaces, which allows
us to characterize uncertain phenomena using probabilities. A probability space has three
components. First, a sample space containing the mutually exclusive outcomes associated
with the phenomenon. Second, a collection containing the events that are assigned proba-
bilities. Third, a probability measure, which is a function that assigns a probability to each
event in the collection.

The collection of events in a probability space must satisfy the conditions in the following
definition.

Definition 1.7 (Collection of events). When defining a probability space based on a sample
space Ω, we assign probabilities to a collection of events (a set of subsets of Ω) denoted
by C, such that:
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10 1 Probability

1 If an event belongs to the collection, A ∈ C, then its complement belongs to the collection,
Ac ∈ C.

2 If two events A and B belong to the collection, A,B ∈ C, then their union belongs to the
collection, A∪B ∈ C. This also holds for infinite sequences; if A1, A2, A3, . . . ∈ C then
∪∞

i=1Ai ∈ C.
3 The sample space is in the collection, Ω ∈ C.

A collection satisfying Definition 1.7 is called a σ-algebra in mathematical jargon, which
may sound somewhat intimidating. However, the definition just implements the intuitive
properties discussed in Section 1.1. If we assign probabilities to certain events, then we
should also assign probabilities to their complements, unions, and intersections. Although
the definition does not mention intersections explicitly, it implies that intersections of events
in C also belong to C. This follows from the fact that A ∩B = (Ac ∪Bc)c (a consequence
of De Morgan’s laws) combined with Conditions 1 and 2. The empty set ∅ always belongs
to a valid collection because it is the complement of Ω. The simplest possible collection
satisfying the conditions is {Ω, ∅}, but this is not a very interesting collection; usually we
want to consider more events.

Example 1.8 (Die roll: collection of events). A natural choice for the collection of events
in our six-sided die example (Example 1.1) is the power set of the sample space Ω :=
{1, 2, 3, 4, 5, 6}, which is the set of all 26 = 64 subsets of Ω. However, other choices are
possible. For example, we may want to consider the smallest possible collection containing
the event A := {5}. In that case, the collection must also contain Ac = {1, 2, 3, 4, 6} by
Condition 1 in Definition 1.7, Ω by Condition 3, and the empty set ∅ by Conditions 1 and 3.
This is enough. You can check that the collection {∅, A,Ac,Ω} satisfies Definition 1.7.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Once we have defined a sample space and a corresponding collection of events, the final
ingredient to define a probability space is a probability measure that assigns probabilities
to the events in the collection. The probability measure must satisfy the following axioms,
which encode the intuitive properties of probability derived in Section 1.1.

Definition 1.9 (Probability measure). Given a sample spaceΩ, let C be a collection of events
satisfying the conditions in Definition 1.7. A probability measure P is a function, which maps
events in C to a number between 0 and 1, satisfying the following axioms:

1 All probabilities are nonnegative, P (A) ≥ 0 for any event A ∈ C.
2 The probability of the sample space is one, P (Ω) = 1.
3 If the events A1, A2, . . . , An ∈ C are disjoint (i.e., Ai ∩ Aj = ∅ for i 	= j), then the

probability of their union equals the sum of their individual probabilities,

P (∪n
i=1Ai) =

n∑

i=1

P (Ai) . (1.15)

Similarly, for a countably infinite sequence of disjoint events A1, A2, . . . ∈ C,

P
(
lim
n→∞

∪n
i=1Ai

)
= lim

n→∞

n∑

i=1

P (Ai) . (1.16)

Axiom 3 in Definition 1.9 implies the formula (1.11) for the probability of the intersection
of two events, derived informally in Section 1.1.2.
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