Cambridge University Press & Assessment 978-1-009-17970-6 — Optimal Mass Transport on Euclidean Spaces Francesco Maggi Table of Contents <u>More Information</u>

Contents

	Preface		<i>page</i> xiii	
	Nota	ution	xix	
	PAF	RTI THE KANTOROVICH PROBLEM		
1	An l	Introduction to the Monge Problem	3	
	1.1	The Original Monge Problem	3	
	1.2	A Modern Formulation of the Monge Problem	5	
	1.3	Optimality via Duality and Transport Rays	7	
	1.4	Monotone Transport Maps	9	
	1.5	Knothe Maps	10	
2	Disc	rete Transport Problems	14	
	2.1	The Discrete Kantorovich Problem	14	
	2.2	c-Cyclical Monotonicity with Discrete Measures	17	
	2.3	Basics about Convex Functions on \mathbb{R}^n	20	
	2.4	The Discrete Kantorovich Problem with Quadratic Cost	27	
	2.5	The Discrete Monge Problem	32	
3	The	Kantorovich Problem	35	
	3.1	Transport Plans	35	
	3.2	Formulation of the Kantorovich Problem	37	
	3.3	Existence of Minimizers in the Kantorovich Problem	40	
	3.4	c-Cyclical Monotonicity with General Measures	42	
	3.5	Kantorovich Duality for General Transport Costs	43	
	3.6	Two Additional Results on c-Cyclical Monotonicity	49	
	3.7	Linear and Quadratic Kantorovich Dualities	51	

Cambridge University Press & Assessment
978-1-009-17970-6 – Optimal Mass Transport on Euclidean Spaces
Francesco Maggi
Table of Contents
More Information

Х	Contents	
	PART II SOLUTION OF THE MONGE PROBLEM WITH QUADRATIC COST: THE BRENIER-MCCANN THEOREM	
4	 The Brenier Theorem 4.1 The Brenier Theorem: Statement and Proof 4.2 Inverse of a Brenier Map and Fenchel–Legendre Transform 4.3 Brenier Maps under Rigid Motions and Dilations 	59 61 64 65
5	 First Order Differentiability of Convex Functions 5.1 First Order Differentiability and Rectifiability 5.2 Implicit Function Theorem for Convex Functions 	67 67 69
6	 The Brenier-McCann Theorem 6.1 Proof of the Existence Statement 6.2 Proof of the Uniqueness Statement 	73 74 75
7	 Second Order Differentiability of Convex Functions 7.1 Distributional Derivatives of Convex Functions 7.2 Alexandrov's Theorem for Convex Functions 	77 77 79
8	 The Monge–Ampère Equation for Brenier Maps 8.1 Convex Inverse Function Theorem 8.2 Jacobians of Convex Gradients 8.3 Derivation of the Monge–Ampère Equation 	86 88 90 93
	CALCULUS OF VARIATIONS AND THE WASSERSTEIN SPACE	
9	Isoperimetric and Sobolev Inequalities in Sharp Form9.1A Jacobian–Laplacian Estimate9.2The Euclidean Isoperimetric Inequality9.3The Sobolev Inequality on \mathbb{R}^n	97 97 98 100
10	 Displacement Convexity and Equilibrium of Gases 10.1 A Variational Model for Self-interacting Gases 10.2 Displacement Interpolation 10.3 Displacement Convexity of Internal Energies 10.4 The Brunn–Minkowski Inequality 	104 104 109 112 115
11	The Wasserstein Distance W_2 on $\mathcal{P}_2(\mathbb{R}^n)$ 11.1 Displacement Interpolation and Geodesics in $(\mathcal{P}_2(\mathbb{R}^n), \mathbf{W}_2)$	118 118

	Contents	xi
	11.2 Some Basic Remarks about Wa	120
	11.3 The Wasserstein Space ($\mathcal{P}_2(\mathbb{R}^n), \mathbb{W}_2$)	124
		100
12	Gradient Flows and the Minimizing Movements Scheme	129
	12.1 Gradient Flows in \mathbb{R}^n and Convexity	129
	12.2 Gradient Flow Interpretations of the Heat Equation	133
	12.5 The Minimizing Movements Scheme	155
13	The Fokker–Planck Equation in the Wasserstein Space	139
	13.1 The Fokker–Planck Equation	139
	13.2 First Variation Formulae for Inner Variations	142
	13.3 Analysis of the Entropy Functional	147
	13.4 Implementation of the Minimizing Movements Scheme	150
	13.5 Displacement Convexity and Convergence to Equilibrium	160
14	The Euler Equations and Isochoric Projections	164
	14.1 Isochoric Transformations of a Domain	164
	14.2 The Euler Equations and Principle of Least Action	166
	14.3 The Euler Equations as Geodesics Equations	170
15	Action Minimization Fularian Valacities and Otto's Calculus	174
13	15.1 Fulerian Velocities and Action for Curves of Measures	174
	15.2 From Vector Fields to Curves of Measures	179
	15.3 Displacement Interpolation and the Continuity Equation	181
	15.4 Linschitz Curves Admit Eulerian Velocities	183
	15.5 The Benamou–Brenier Formula	184
	15.6 Otto's Calculus	189
	PART IV SOLUTION OF THE MONGE	
	PROBLEM WITH LINEAR COST: THE	
	SUDAKOV THEOREM	
16	Optimal Transport Maps on the Real Line	195
	16.1 Cumulative Distribution Functions	195
	16.2 Optimal Transport on the Real Line	197
17	Disintegration	204
1/	Distinces auon 17.1 Statement of the Disintegration Theorem and Examples	204 205
	17.1 Statement of the Disintegration Theorem	203
	17.3 Stochasticity of Transport Plans	200
	17.4 K - M for Nonatomic Origin Measures	211
	$1/1 + 1 \times_C = 1 \times_C 101$ introducting of gin with a subscription	<u> </u>

xii

18	Solut	ion to the Monge Problem with Linear Cost	216
	18.1	Transport Rays and Transport Sets	219
	18.2	Construction of the Sudakov Maps	227
	18.3	Kantorovich Potentials Are Countably $C^{1,1}$ -Regular	238
	18.4	Proof of the Sudakov Theorem	240
	18.5	Some Technical Measure-Theoretic Arguments	242
19	An Introduction to the Needle Decomposition Method		
	19.1	The Payne–Weinberger Comparison Theorem	248
	19.2	The Localization Theorem	254
	19.3	$C^{1,1}$ -Extensions of Kantorovich Potentials	256
	19.4	Concave Needles and Proof of the Localization Theorem	259
	Appendix A Radon Measures on \mathbb{R}^n and Related Topics		
	A.1	Borel and Radon Measures, Main Examples	268
	A.2	Support and Concentration Set of a Measure	269
	A.3	Fubini's Theorem	269
	A.4	Push-Forward of a Measure	270
	A.5	Approximation Properties	270
	A.6	Weak-Star Convergence	271
	A.7	Weak-Star Compactness	271
	A.8	Narrow Convergence	272
	A.9	Differentiation Theory of Radon Measures	273
	A.10	Lipschitz Functions and Area Formula	274
	A.11	Vector-valued Radon Measures	275
	A.12	Regularization by Convolution	276
	A.13	Lipschitz Approximation of Functions of Bounded Variation	276
	A.14	Coarea Formula	278
	A.15	Rectifiable Sets	279
	A.16	The $C^{1,1}$ -Version of the Whitney Extension Theorem	280
	Appe	ndix B Bibliographical Notes	281
	Refer	ences	288
	Index		294

Contents