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1 Introduction

Optimization is a staple of mathematical modeling. In this rich framework, we con-

sider a set S called the search space—it contains all possible answers to our problem,

good and bad—and a cost function f : S → R which associates a cost f (x) to each

element x of S. The goal is to find x ∈ S such that f (x) is as small as possible, that is,

a best answer. We write

min
x∈S

f (x)

to represent both the optimization problem and the minimal cost (if it exists). Occa-

sionally, we wish to denote specifically the subset of S for which the minimal cost is

attained; the standard notation is

arg min
x∈S

f (x),

bearing in mind that this set might be empty. We will discuss a few simple applications

which can be modeled in this form.

Rarely, optimization problems admit an analytical solution. Typically, we need

numerical algorithms to (try to) solve them. Often, the best algorithms exploit

mathematical structure in S and f .

An important special case arises when S is a linear space such as Rn . Minimizing

a function f in R
n is called unconstrained optimization because the variable x is free

to move around R
n , unrestricted.

If f is sufficiently differentiable and R
n is endowed with an inner product (i.e., if

we make it into a Euclidean space), then we have a notion of gradient and perhaps

even a notion of Hessian for f . These objects give us a firm understanding of how f

behaves locally around any given point. Famous algorithms such as gradient descent

and Newton’s method exploit these objects to move around R
n efficiently in search of

a solution.

Notice, however, that the Euclidean structure of Rn and the smoothness of f are

irrelevant to the definition of the optimization problem itself: they are merely struc-

tures that we may (and as experience shows, we should) use algorithmically to our

advantage.

Subsuming linearity, we focus on smoothness as the key structure to exploit: we

assume the set S is a smooth manifold and the function f is smooth on S. This calls

for precise definitions, constructed first in Chapter 3. For a first intuition, one can think
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2 Introduction

of smooth manifolds as surfaces in R
n that do not have kinks or boundaries, such as a

plane, a sphere, a torus, or a hyperboloid.

We could think of optimization over such surfaces as constrained, in the sense that

x is not allowed to move freely in R
n : it is constrained to remain on the surface. Alter-

natively, and this is the viewpoint favored here, we can think of this as unconstrained

optimization, in a world where the smooth surface is the only thing that exists: like

an ant walking on a large ball might feel unrestricted in its movements, aware only

of the sphere it lives on; or like the two-dimensional inhabitants of Flatland [Abb84]

who find it hard to imagine that there exists such a thing as a third dimension, feeling

thoroughly free in their own subspace.

A natural question then is: can we generalize the Euclidean algorithms from

unconstrained optimization to handle the broader class of optimization over smooth

manifolds? The answer is essentially yes, going back to the 1970s [Lue72, Lic79], the

1980s [Gab82] and the 1990s [Udr94, Smi94, HM96, Rap97, EAS98], and sparking a

significant amount of research in the past two decades.

To generalize algorithms such as gradient descent and Newton’s method, we need

a proper notion of gradient and Hessian on smooth manifolds. In the linear case,

this required the introduction of an inner product: a Euclidean structure. In our more

general setting, we leverage the fact that smooth manifolds can be linearized locally

around every point. The linearization at x is called the tangent space at x. By endowing

each tangent space with its own inner product (varying smoothly with x, in a sense to

be made precise), we construct what is called a Riemannian structure on the manifold:

it becomes a Riemannian manifold.

A Riemannian structure is sufficient to define gradients and Hessians on the man-

ifold, paving the way for optimization. There exist several Riemannian structures on

each manifold: our choice may impact algorithmic performance. In that sense, identi-

fying a useful structure is part of the algorithm design—as opposed to being part of the

problem formulation, which ended with the definition of the search space (as a crude

set) and the cost function.

Chapter 2 covers a few simple applications, mostly to give a sense of how mani-

folds come up. We then go on to define smooth manifolds in a restricted1 setting in

Chapter 3, where manifolds are embedded in a linear space, much like the unit sphere

in three-dimensional space. In this context, we define notions of smooth functions,

smooth vector fields, gradients and retractions (a means to move around on a mani-

fold). These tools are sufficient to design and analyze a first optimization algorithm in

Chapter 4: Riemannian gradient descent. As readers progress through these chapters,

it is the intention that they also read bits of Chapter 7 from time to time: useful embed-

ded manifolds are studied there in detail. Chapter 5 provides more advanced geometric

tools for embedded manifolds, including the notions of Riemannian connections and

1 Some readers may know Whitney’s celebrated embedding theorems, which state that any smooth mani-

fold can be embedded in a linear space [BC70, p. 82]. The mere existence of an embedding, however, is

of little use for computation.
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Introduction 3

Hessians. These are put to good use in Chapter 6 to design and analyze Riemannian

versions of Newton’s method and the trust-region method.

The linear embedding space is useful for intuition, to simplify definitions, and to

design tools. Notwithstanding, all the tools and concepts we define in the restricted set-

ting are intrinsic, in the sense that they are well defined regardless of the embedding

space. We make this precise much later, in Chapter 8, where all the tools from Chap-

ters 3 and 5 are redefined in the full generality of standard treatments of differential

geometry. This is also the time to discuss topological issues to some extent. Generality

notably makes it possible to discuss a more abstract class of manifolds called quotient

manifolds in Chapter 9. They offer a beautiful way to harness symmetry, so common

in applications.

In closing, Chapter 10 offers a limited treatment of more advanced geometric tools

such as the Riemannian distance, geodesics, the exponential map and its inverse, par-

allel transports and transporters, notions of Lipschitz continuity, finite differences, and

covariant differentiation of tensor fields. Then, Chapter 11 covers elementary notions

of convexity on Riemannian manifolds with simple implications for optimization. This

topic has been around since the 1990s, and has been gaining traction in research lately.

More than 150 years ago, Riemann invented a new kind of geometry for the abstract

purpose of understanding curvature in high-dimensional spaces. Today, this geometry

plays a central role in the development of efficient algorithms to tackle technological

applications Riemann himself—arguably—could have never envisioned. Through this

book, I invite you to enjoy this singularly satisfying success of mathematics, with an

eye to turning geometry into algorithms.
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2 Simple examples

Before formally defining what manifolds are, and before introducing any particu-

lar algorithms, this chapter surveys simple problems that are naturally modeled as

optimization on manifolds. These problems are motivated by applications in vari-

ous scientific and technological domains. We introduce them chiefly to illustrate how

manifolds arise and to motivate the mathematical abstractions in subsequent chapters.

The first example leads to optimization on an affine subspace: it falls within the

scope of optimization on manifolds, but one can also handle it with classical tools.

Subsequently, we encounter optimization on spheres, products of spheres, orthonormal

matrices, the set of all linear subspaces, rotation matrices, fixed-rank matrices, positive

definite matrices and certain quadratic surfaces. Through those, we get a glimpse of

the wide reach of optimization on manifolds.

Below, we use a few standard concepts from linear algebra and calculus that are

revisited in Section 3.1.

2.1 Sensor network localization from directions: an affine subspace

Consider n sensors located at unknown positions t1, . . . , tn in R
d . We aim to locate

the sensors, that is, estimate the positions ti , based on some directional measurements.

Specifically, for each pair of sensors (i, j) corresponding to an edge of a graph G, we

receive a noisy measurement of the direction from t j to ti :

vi j ≈
ti − t j
‖ti − tj ‖

,

where ‖x‖ =
√

x2
1
+ · · · + x2

d
is the Euclidean norm on R

d induced by the inner

product 〈u,v〉 = u⊤v = u1v1 + · · · + udvd .

There are two fundamental ambiguities in this task. First, directional measurements

reveal nothing about the global location of the sensors: translating the sensors as

a whole does not affect pairwise directions. Thus, we may assume without loss of

generality that the sensors are centered:

t1 + · · · + tn = 0.

Second, the measurements reveal nothing about the global scale of the sensor arrange-

ment. Specifically, scaling all positions ti by a scalar α > 0 as αti has no effect on the
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2.2 Single extreme eigenvalue or singular value: spheres 5

directions separating the sensors so that the true scale cannot be recovered from the

measurements. It is thus legitimate to fix the scale arbitrarily, to break symmetry. One

fruitful way is to assume the following [HLV18]:
∑

(i, j )∈G

〈

ti − t j ,vi j
〉

= 1.

Indeed, if this constraint holds for some set of locations t1, . . . , tn , then it does not hold

for locations αt1, . . . ,αtn unless α = 1.

Given a tentative estimator t̂1, . . . , t̂n ∈ R
d for the locations, we may assess its

compatibility with the measurement vi j by computing

���(t̂i − t̂ j ) −
〈

t̂i − t̂ j ,vi j
〉

vi j
��� .

Indeed, if t̂i − t̂ j and vi j are aligned in the same direction, this evaluates to zero. Oth-

erwise, it evaluates to a positive number, growing as alignment degrades. Combined

with the symmetry-breaking conditions, this suggests the following formulation for

sensor network localization from direction measurements:

min
t̂1, ..., t̂n ∈Rd

∑

(i, j )∈G

���(t̂i − t̂ j ) −
〈

t̂i − t̂ j ,vi j
〉

vi j
���

2

subject to t̂1 + · · · + t̂n = 0 and
∑

(i, j )∈G

〈

t̂i − t̂ j ,vi j
〉

= 1.

The role of the second constraint is clear: it excludes t̂1 = · · · = t̂n = 0, which would

otherwise be optimal.

Grouping the variables as the columns of a matrix, we find that the search space

for this problem is an affine subspace of Rd×n : this is a linear manifold. It is also an

embedded submanifold of Rd×n . Hence it falls within our framework.

With the simple cost function as above, this problem is in fact a convex quadratic

minimization problem on an affine subspace. As such, it admits an explicit solution

which merely requires solving a linear system. Optimization algorithms can be used

to solve this system implicitly. More importantly, the power of optimization algorithms

lies in the flexibility that they offer: alternative cost functions may be used to improve

robustness against specific noise models for example, and those require more general

algorithms [HLV18].

2.2 Single extreme eigenvalue or singular value: spheres

Let A ∈ R
n×n be a symmetric matrix: A = A⊤. By the spectral theorem, A admits

n real eigenvalues λ1 ≤ · · · ≤ λn and corresponding real, orthonormal eigenvectors

v1, . . . ,vn ∈ R
n , where orthonormality is assessed with respect to the standard inner

product over Rn : 〈u,v〉 = u⊤v.

For now, we focus on computing one extreme eigenpair of A: (λ1,v1) or (λn ,vn )

will do. Let Rn
∗ denote the set of nonzero vectors in R

n . It is well known that the

Rayleigh quotient,
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6 Simple examples

r : Rn
∗ → R : x �→ r (x) =

〈x, Ax〉
〈x, x〉

,

attains its extreme values when x is aligned with ±v1 or ±vn , and that the correspond-

ing value of the quotient is λ1 or λn . We will rediscover such properties through the

prism of optimization on manifolds as a running example in this book. One can gain

some insight by checking that r (vi ) = λi .

Say we are interested in the smallest eigenvalue, λ1. Then, we must solve the

following optimization problem:

min
x∈Rn

∗

〈x, Ax〉
〈x, x〉

.

The set Rn
∗ is open in R

n : it is an open submanifold of Rn . Optimization over an open

set has its challenges (more on this later). Fortunately, we can easily circumvent these

issues in this instance.

Since the Rayleigh quotient is invariant to scaling, that is, since r (αx) = r (x)

for all nonzero real α, we may fix the scale arbitrarily. Given the denominator of

r , one particularly convenient way is to restrict our attention to unit-norm vectors:

‖x‖2 = 〈x, x〉 = 1. The set of such vectors is the unit sphere in R
n :

Sn−1
=

{

x ∈ Rn : ‖x‖ = 1
}

.

This is an embedded submanifold of Rn . Our problem becomes

min
x∈Sn−1

〈x, Ax〉 . (2.1)

This is perhaps the simplest non-trivial instance of an optimization problem on a

manifold: we use it recurringly to illustrate concepts as they occur.

Similarly to the above, we may compute the largest singular value of a matrix M ∈
R

m×n together with associated left- and right-singular vectors by solving

max
x∈Sm−1,y∈Sn−1

〈x,My〉 . (2.2)

This is the basis of principal component analysis: see also Section 2.4. The search

space is a Cartesian product of two spheres. This too is a manifold, specifically, an

embedded submanifold of Rm × Rn . In general:

Products of manifolds are manifolds.

This is an immensely useful property.

2.3 Dictionary learning: products of spheres

JPEG and its more recent version JPEG 2000 are some of the most commonly used

compression standards for photographs. At their core, these algorithms rely on basis

expansions: discrete cosine transforms for JPEG, and wavelet transforms for JPEG

2000. That is, an image (or rather, each patch of the image) is written as a linear

combination of a fixed collection of basis images. To fix notation, say an image is
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2.3 Dictionary learning: products of spheres 7

represented as a vector y ∈ Rd (its pixels rearranged into a single column vector) and

the basis images are b1, . . . ,bd ∈ Rd (each of unit norm). There exists a unique set of

coordinates c ∈ Rd such that

y = c1b1 + · · · + cdbd .

Since the basis images are fixed (and known to anyone creating or reading image files

in this format), it is equivalent to store y or c.

The basis is designed carefully with two goals in mind. First, the transform between

y and c should be fast to compute (one good starting point to that effect is orthogonal-

ity). Second, images encountered in practice should lead to many of the coefficients

ci being zero, or close to zero. Indeed, to recover y, it is only necessary to record

the nonzero coefficients. To compress further, we may also decide not to store the

small coefficients: if so, y can still be reconstructed approximately. Beyond compres-

sion, another benefit of sparse expansions is that they can reveal structural information

about the contents of the image.

In dictionary learning, we focus on the second goal. As a key departure from the

above, the idea here is not to design a basis by hand, but rather to learn a good basis

from data automatically. This way, we may exploit structural properties of images that

come up in a particular application. For example, it may be the case that photographs

of faces can be expressed more sparsely in a dedicated basis as compared to a standard

wavelet basis. Pushing this idea further, we relax the requirement of identifying a

basis, instead allowing ourselves to pick more than d images for our expansions. The

collection of images b1, . . . ,bn ∈ Rd forms a dictionary. Its elements are called atoms,

and they normally span R
d in an overcomplete way, meaning any image y can be

expanded into a linear combination of atoms in more than one way. The aim is that at

least one of these expansions should be sparse, or have many small coefficients. For

the magnitudes of coefficients to be meaningful, we further require all atoms to have

the same norm: ‖bi ‖ = 1 for all i.

Thus, given a collection of k images y1, . . . , yk ∈ Rd , the task in dictionary learning

is to find atoms b1, . . . ,bn ∈ R
d such that (as much as possible) each image yi is a

sparse linear combination of the atoms. Collect the input images as the columns of a

data matrix Y ∈ R
d×k , and the atoms into a matrix D ∈ R

d×n (to be determined).

Expansion coefficients for the images in this dictionary form the columns of a matrix

C ∈ Rn×k so that

Y = DC.

Typically, many choices of C are possible. We aim to pick D such that there exists

a valid (or approximately valid) choice of C with numerous zeros. Let ‖C‖0 denote

the number of entries of C different from zero. Then, one possible formulation of

dictionary learning balances both aims with a parameter λ > 0 as (with b1, . . . ,bn the

columns of the dictionary matrix D):

min
D∈Rd×n,C ∈Rn×k

‖Y − DC‖2 + λ‖C‖0 (2.3)

subject to ‖b1‖ = · · · = ‖bn ‖ = 1.
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8 Simple examples

The matrix norm ‖ · ‖ is the Frobenius norm, induced by the standard inner product

〈U,V 〉 = Tr(U⊤V ).

Evidently, allowing the dictionary to be overcomplete (n > d) helps sparsity. An

extreme case is to set n = k, in which case an optimal solution consists in letting D be

Y with normalized columns. Then, each image can be expressed with a single nonzero

coefficient (C is diagonal). This is useless of course, if only because both parties of the

communication must have access to the (possibly huge) dictionary, and because this

choice may generalize poorly when presented with new images. Interesting scenarios

involve n much smaller than k.

The search space for D is a product of several spheres, which is an embedded

submanifold of Rd×n called the oblique manifold:

OB(d,n) = (Sd−1)n =
{
X ∈ Rd×n : diag(X⊤X ) = 1

}
,

where 1 ∈ R
n is the all-ones vector and diag : Rn×n → R

n extracts the diagonal

entries of a matrix. The search space in C is the linear manifold R
n×k . Overall, the

search space of the dictionary learning optimization problem is

OB(d,n) × Rn×k ,

which is an embedded submanifold of Rd×n × Rn×k .

We note in closing that the cost function in (2.3) is discontinuous because of the

term ‖C‖0, making it hard to optimize. A standard reformulation replaces the culprit

with ‖C‖1: the sum of absolute values of the entries of C. This is continuous but

nonsmooth. A possible further step then is to smooth the cost function, for example

exploiting that |x | ≈
√
x2
+ ε2 or |x | ≈ ε log(ex/ε + e−x/ε ) for small ε > 0: these are

standard tricks.

Regardless of changes to the cost function, the manifold OB(d,n) is non-convex so

that finding a global optimum for dictionary learning as stated above is challenging:

see work by Sun et al. [SQW17] for some guarantees.

2.4 Principal component analysis: Stiefel and Grassmann

Let x1, . . . , xn ∈ R
d represent a large collection of centered data points in a d-

dimensional linear space. We may think of it as a cloud of points. It may be the

case that this cloud lies on or near a low-dimensional subspace of R
d , and it may

be distributed anisotropically in that subspace, meaning it shows more variation along

some directions than others. One of the pillars of data analysis is to determine the

main directions of variation of the data. This goes by the name of principal component

analysis (PCA), which we encountered in Section 2.2.

One way to think of a main direction of variation, called a principal component,

is as a vector u ∈ Sd−1 such that projecting the data points to the one-dimensional

subspace spanned by u “preserves most of the variance.” Specifically, let X ∈ Rd×n be

the matrix whose columns are the data points and let uu⊤ be the orthogonal projector
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2.4 Principal component analysis: Stiefel and Grassmann 9

from R
d to the span of u. We wish to maximize the following for u ∈ Sd−1:

n
∑

i=1

‖uu⊤xi ‖2 = ‖uu⊤X ‖2 = 〈uu⊤X ,uu⊤X〉 = 〈XX⊤u,u〉.

We recognize the Rayleigh quotient of the matrix XX⊤ to be maximized for u over

Sd−1 (Section 2.2). An optimal solution is given by a dominant eigenvector of XX⊤,

or equivalently by a dominant left singular vector of X .

Let u1 ∈ Sd−1 be a principal component. We would like to find a second one. That

is, we aim to find u2 ∈ Sd−1, orthogonal to u1, such that projecting the data to the

subspace spanned by u1 and u2 preserves the most variance. The orthogonal projector

to that subspace is u
1
u⊤

1
+ u

2
u⊤

2
. We maximize

‖(u1u
⊤
1 + u2u

⊤
2)X ‖2 = 〈XX⊤u1,u1〉 + 〈XX⊤u2,u2〉

over u2 ∈ Sd−1 with u⊤
2
u

1
= 0. The search space for u2 is an embedded submanifold

of Rd : it is a unit sphere in the subspace orthogonal to u1.

It is often more convenient to optimize for u1 and u2 simultaneously rather than

sequentially. Then, since the above cost function is symmetric in u1 and u2, as is the

constraint u⊤
2
u

1
= 0, we add weights to the two terms to ensure u1 captures a principal

component and u2 captures a second principal component:

max
u1,u2∈Sd−1,u⊤

2
u

1
=0
α1〈XX⊤u1,u1〉 + α2〈XX⊤u2,u2〉,

with α1 > α2 > 0 arbitrary.

More generally, aiming for k principal components, we look for a matrixU ∈ Rd×k

with k orthonormal columns u1, . . . ,uk ∈ R
d . The set of such matrices is called the

Stiefel manifold:

St(d, k) = {U ∈ Rd×k : U⊤U = Ik },

where Ik is the identity matrix of size k. It is an embedded submanifold of Rd×k . The

orthogonal projector to the subspace spanned by the columns of U is UU⊤. Hence

PCA amounts to solving the problem

max
U ∈St(d,k )

k
∑

i=1

αi〈XX⊤ui ,ui〉 = max
U ∈St(d,k )

〈XX⊤U,UD〉, (2.4)

where D ∈ Rk×k is diagonal with diagonal entries α1 > · · · > αk > 0.

It is well known that collecting k top eigenvectors of XX⊤ (or, equivalently, k top

left singular vectors of X) yields a global optimum of (2.4), meaning this optimization

problem can be solved efficiently using tools from numerical linear algebra. Still, the

optimization perspective offers significant flexibility that standard linear algebra algo-

rithms cannot match. Specifically, within an optimization framework, it is possible to

revisit the variance criterion by changing the cost function. This allows one to promote

sparsity or robustness against outliers, for example, to develop variants such as sparse

PCA [dBEG08, JNRS10] and robust PCA [MT11, GZAL14, MZL19, NNSS20].

There may also be computational advantages, for example, in tracking and online
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10 Simple examples

models where the dataset changes or grows with time: it may be cheaper to update

a previously computed good estimator using few optimization steps than to run a

complete eigenvalue or singular value decomposition anew.

If the top k principal components are of interest but their ordering is not, then we

do not need the weight matrix D. In this scenario, we are seeking an orthonormal basis

U for a k dimensional subspace of Rd such that projecting the data to that subspace

preserves as much of the variance as possible. This description makes it clear that the

particular basis is irrelevant: only the selected subspace matters. This is apparent in

the cost function,

f (U) = 〈XX⊤U,U〉,

which is invariant under orthogonal transformations. Specifically, for all Q in the

orthogonal group

O(k) = {Q ∈ Rk×k : Q⊤Q = Ik },

we have f (UQ) = f (U). This induces an equivalence relation1 ∼ on the Stiefel

manifold:

U ∼ V ⇐⇒ V = UQ for some Q ∈ O(k).

This equivalence relation partitions St(d, k) into equivalence classes:

[U] = {V ∈ St(d, k) : U ∼ V } = {UQ : Q ∈ O(k)}.

The set of equivalence classes is called the quotient set:

St(d, k)/∼ = St(d, k)/O(k) = {[U] : U ∈ St(d, k)}.

Importantly, U,V ∈ St(d, k) are equivalent if and only if their columns span the same

subspace of Rd . In other words: the quotient set is in one-to-one correspondence with

the set of subspaces of dimension k in R
d . With the right geometry, the latter is called

the Grassmann manifold:

Gr(d, k) = { subspaces of dimension k in R
d } ≡ St(d, k)/O(k),

where the symbol ≡ reads “is equivalent to” (context indicates in what sense). As

defined here, the Grassmann manifold is a quotient manifold. This type of manifold

is more abstract than embedded submanifolds, but we can still develop numerically

efficient tools to work with them.

Within our framework, computing the dominant eigenspace of dimension k of the

matrix XX⊤ can be written as

max
[U ]∈Gr(d,k )

〈XX⊤U,U〉.

1 Recall that an equivalence relation ∼ on a set M is a reflexive (a ∼ a), symmetric (a ∼ b ⇐⇒ b ∼ a)

and transitive (a ∼ b and b ∼ c =⇒ a ∼ c) binary relation. The equivalence class [a] is the set of

elements of M that are equivalent to a. Each element of M belongs to exactly one equivalence class.
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