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1 Introduction and Preliminaries

Monotone operator theory is an elegant and powerful tool for analyzing first-order

convex optimization methods and, as such, plays a central role in convex analysis and

convex optimization theory. In this book, we use this tool to provide a unified analysis

of many classical and modern convex optimization methods.

This book is organized into two parts. Part I presents analysis of convex optimization

methods via monotone operators, the core content. The content of Part I has sequential

dependence, so the chapters should be read in a linear order. Part II presents additional

auxiliary topics. The chapters can be read independently of each other. A diagram in

the preface illustrates the dependency of the chapters.

1.1 FIRST-ORDER METHODS IN THE MODERN ERA

Many convex optimizationmethods can be classified into first or second-ordermethods.

First-order methods can be described and analyzed with gradients and subgradients,

while second-order methods use second-order derivatives or their approximations.

In the early days of convex optimization, the 1970s through the 1990s, researchers

focused primarily on second-order methods, as they were more effective in solving the

relatively smaller optimization problems of the era. Within the past decade, however,

the demand to solve ever-larger problems grew, and so did the popularity of first-order

methods.

Second-order methods require relatively fewer iterations to solve the optimization

problem to high accuracy, even up to machine precision. However, the computational

cost per iteration quickly becomes expensive as the problem size grows. In contrast,

first-order methods have a much lower computational cost per iteration. For some

large-scale optimization problems, running even a single iteration of a second-order

method is infeasible, while first-order methods can solve such problems to acceptable

accuracy.

Another advantage of first-order methods is that they are extremely simple; we can

usually describe the entire method with two or three lines of equations. This is a signif-

icant advantage in practice, as simpler methods are easy for practitioners to implement

and try out quickly, and the simplicity tends to make efficient parallelization easier.
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2 1 Introduction and Preliminaries

The two classes of methods are usually not in competition. When a high-accuracy

solution is needed, second-order methods should be used. In large-scale problems, one

should use first-order methods and tolerate inaccuracy. After all, most engineering

applications require only a few digits of accuracy in their solution. If the problem size

is small, one should use second-order methods since there is little reason to forgo the

high accuracy.

The total cost of a method is

(cost per iteration) × (number of iterations).

We can analyze the cost per iteration by examining the computational cost of the indi-

vidual components of the method. We can analyze the number of iterations required

for convergence by analyzing the rate of convergence.

In convex optimization, arguments advocating one method over another are often

based on the cost per iteration. In fact, we just made this very argument in comparing

first-order and second-order methods. However, it is important to keep in mind that

these arguments are incomplete since the cost per iteration is only half of the equation,

literally. A method with a low cost per iteration has the potential, not a guarantee, to

be efficient.

Nevertheless, primarily focusing on the cost per iteration of a method is still a useful

simplification, so we adopt it in this book. With the exception of §12 and §13, this book

almost entirely focuses on establishing convergence without paying much attention to

the rate of convergence. We do prove convergence rates, but the rates are discussed

infrequently.

1.2 LIMITATIONS OF MONOTONE OPERATOR THEORY

One of the main goals of this book is to provide streamlined and simple convergence

proofs, and we only discuss results that fit this approach. Such results are simple but

often not the strongest. The strongest results in convex optimization usually involve

arguments that go beyond monotone operator theory.

Proofs based on monotone operator theory use monotonicity, rather than convexity,

as the key property. This line of analysis does not lead to results involving function val-

ues. For example, the gradient method xk+1 = xk − α∇f (xk) converges, under suitable
assumptions, with rate ‖∇f (xk)‖2 ≤ O(1/k) and f (xk) − f (x⋆) ≤ O(1/k). We can prove

the first result with properties of monotone operators, but the second result requires

properties of convex functions. Also, topics such as line searching, Frank–Wolfe, and

second-order methods are not explained very well with monotone operator theory.

Monotone operators do play a central role, but convex optimization theory does go

beyond monotone operators.

1.3 PRELIMINARIES

In this section, we quickly review preliminary topics. We simply state, without proof,

many of the results based on convex analysis and refer interested readers to standard
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1 Introduction and Preliminaries 3

references such as [Roc70d, Roc74, HL93, HL01, BV04, Nes04, BL06, NP06, Ber09,

BV10, BC17a].

1.3.1 Sets

A set is empty when it contains no element. Let ∅ denote the empty set. When a set

contains one element, we say it is a singleton.

A set S is convex if x,y ∈ S implies θx + (1 − θ)y ∈ S for all θ ∈ [0,1]. The empty set,

singletons, and Rn are also convex sets.

In this book, we overload the standard notation defined for points to sets. In

particular, when α ∈ R, x ∈ Rn, A,B ⊆ Rn, andM ∈ Rm×n, we write

αA = {αa | a ∈ A}
x +A = {x + a | a ∈ A}
MA = {Ma | a ∈ A}

A + B = {a + b | a ∈ A, b ∈ B}.

These operations preserve convexity; ifA andB are convex, all of these sets are convex.

The sum A + B is called theMinkowski sum.

1.3.2 Linear Algebra

Write Rn for the n-dimensional Euclidean space. For any x,y ∈ Rn, write

〈x,y〉 = x⊺y =
n
∑

i=1

xiyi

for the standard inner product.

Given a matrix A ∈ Rm×n, write R(A) for the range of A and N(A) for the nullspace

ofA. IfA ∈ Rn×n, we sayA is a square matrix. IfA⊺
= A, which impliesA is square, we

say A is symmetric. If A is symmetric, the eigenvalues of A are real. Write λmax(A) and
λmin(A) respectively for the largest and smallest eigenvalues ofA, whenA is symmetric.

If all eigenvalues of a symmetric matrix A are nonnegative, we say A is symmetric

positive semidefinite and write A � 0. If all eigenvalues of a symmetric matrix A are

strictly positive, we say A is symmetric positive definite and write A ≻ 0. We write

A � B and A ≻ B if A − B � 0 and A − B ≻ 0, respectively.

Given M � 0, write M1/2 for the matrix square root, the unique symmetric positive

semidefinite matrix that satisfies (M1/2)2 = M. If M ≻ 0, then M1/2 ≻ 0, and we write

M−1/2
= (M1/2)−1.

Consider a symmetric matrix X ∈ R(m+n)×(m+n) partitioned as

X =

[

A B

B⊺ C

]

,

whereA = A⊺ ∈ Rm×m, B ∈ Rm×n, and C = C⊺ ∈ Rn×n. WhenA is invertible, we call the

matrix

S = C − B⊺A−1B
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4 1 Introduction and Preliminaries

the Schur complement of A in X. Note that S ∈ Rn×n is symmetric. Given A ≻ 0, X

is positive (semi)definite if and only if S is positive (semi)definite. Likewise, when C is

invertible,

T = A − BC−1B⊺

is the Schur complement of C in X. Given C ≻ 0, X is positive (semi)definite if and

only if T is positive (semi)definite. We use the Schur complement to assess whether a

symmetric matrix is positive (semi)definite.

The 2-norm or the Euclidean norm is

‖x‖ = ‖x‖2 =
√

〈x,x〉.

In some cases, we will use the 1-norm and the ∞-norm respectively defined as

‖x‖1 =
n
∑

i=1

|xi |, ‖x‖∞ = max
i=1,...,n

|xi |.

Given A ≻ 0, define the A-norm as

‖x‖A =
√
x⊺Ax.

Given A � 0, define the A-seminorm as

‖x‖A =
√
x⊺Ax.

Since this is a seminorm, the triangle inequality ‖x + y‖A ≤ ‖x‖A + ‖y‖A and absolute

homogeneity ‖αx‖A = |α |‖x‖A hold, but ‖x‖A = 0 is possible when x , 0.

Given a matrix A ∈ Rm×n, write

σmax(A) =
√

λmax(A⊺A) = max
x,0

‖Ax‖
‖x‖

for the maximum singular value of A and

σmin(A) =
√

λmin(A⊺A) = min
x,0

‖Ax‖
‖x‖

for the minimum singular value of A. While a real eigenvalue can be negative, all

singular values are nonnegative.

We say V ⊆ Rn is a (linear) subspace if 0 ∈ V, x,y ∈ V implies x + y ∈ V, and x ∈ V

implies αx ∈ V for any α ∈ R. Under this definition, {0} and Rn are also subspaces. For

any A ∈ Rm×n, R(A) and N(A) are subspaces.

1.3.3 Analysis

For L > 0, we say that a mapping � : R
n → Rm is L-Lipschitz (continuous) if

‖�(x) − �(y)‖ ≤ L‖x − y‖ ∀x,y ∈ Rn.

We say � is Lipschitz (continuous) if � is L-Lipschitz for some unspecified L ∈ (0,∞).
(One could say that a constant function is 0-Lipschitz, but we exclude this degenerate

case from our definition, since we will later encounter quantities like 2/L.)
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1 Introduction and Preliminaries 5

If a mapping is Lipschitz, it is a continuous mapping. If�1 and�2 are respectivelyL1-

and L2-Lipschitz, then �1 ◦ �2 is L1L2-Lipschitz since

‖�1(�2(x)) − �1(�2(y))‖ ≤ L1‖�2(x) − �2(y)‖ ≤ L1L2‖x − y‖.

If�1 and�2 are respectivelyL1- andL2-Lipschitz, then α1�1+α2�2 is (|α1 |L1+ |α2 |L2)-
Lipschitz.

A matrix A ∈ Rm×n can be viewed as a mapping from x to Ax. Since

‖Ax‖ ≤ σmax(A)‖x‖,

we can view A as a σmax(A)-Lipschitz mapping.

Write

B(x, r) = {y ∈ Rn | ‖y − x‖ ≤ r}

for the closed ball of radius r centered at x. Define the interior of a set C as

intC = {x ∈ C |B(x, r) ⊆ C for some r > 0}.

Denote the closure of a set C as clC. Define the boundary of C as clC\intC.
An affine set A can be expressed as

A = x0 + V,

where x0 ∈ Rn and V ⊆ Rn is a subspace. The affine hull of C is defined as

affC = {θ1x1 + · · · + θkxk | x1, . . . ,xk ∈ C, θ1 + · · · + θk = 1, k ≥ 1}.

The affine hull is the smallest affine set containing C; if C ⊆ A and A is affine, then

aff clC ⊆ A.

Define the relative interior of a set C as

riC = {x ∈ C |B(x, r) ∩ affC ⊆ C for some r > 0}.

The relative interior of a nonempty convex set is nonempty. Under this definition, the

relative interior of a singleton is the singleton itself. Define the relative boundary ofC as

clC\riC. When we are dealing with low-dimensional sets placed in higher-dimensional

spaces, the notion of relative interior is useful.

Example 1.1 Consider the line segment

S =
{

(x,y) ∈ R2 | x ∈ [0.5,1], y = 4x − 3
}

.

The relative interior is the line segment with the end points excluded.
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6 1 Introduction and Preliminaries

Define the distance of a point x ∈ Rn to a nonempty set X ⊆ Rn as

dist(x,X) = inf
z∈X

‖z − x‖.

When X is nonempty and closed, the infimum is attained and dist(x,X) = 0 if and only

if x ∈ X. For notational convenience, write dist2(x,X) = (dist(x,X))2.

1.3.4 Functions

An extended real-valued function is a function that maps to the extended real line,

R ∪ {±∞}. Unless otherwise specified, functions in this book are extended real-valued.

Write

dom f = {x ∈ Rn | f (x) < ∞}

for the (effective) domain of f. We use ≤, <, ≥, and > for elements of the extended real

line in the obvious way; for any finite α, we have −∞ < α < ∞. We allow ∞ ≤ ∞ and

−∞ ≤ −∞, but not ∞ < ∞ or −∞ < −∞.

A function f is convex if dom f is a convex set and

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y), ∀x,y ∈ dom f, θ ∈ (0,1). (1.1)

A function f is strictly convex if the inequality (1.1) is strict when x , y. We say f is

(strictly) concave if −f is (strictly) convex.
The epigraph of a function is defined as

epi f = {(x, α) ∈ Rn × R | f (x) ≤ α}.

A function f is convex if and only if epi f is convex. A function is proper if its value is

never −∞ and is finite somewhere. A proper function is closed if its epigraph is a closed

set in Rn+1. A proper function is closed if and only if it is lower semicontinuous. We

say a function is CCP if it is closed, convex, and proper. As most convex functions of

interest are closed and proper, we focus exclusively on CCP functions in this book. A

function is CCP if and only if its epigraph is a nonempty closed convex set without a

“vertical line,” a line of the form {(x0, t) | t ∈ R} for some x0 ∈ Rn.

Example 1.2 Whether a convex function f is closed is determined by f’s behavior on the
boundary of dom f.

The dashed line denotes the function value of∞.
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1 Introduction and Preliminaries 7

Example 1.3 The epigraph of the CCP function − log is a nonempty closed convex set.

If f is a CCP function and α > 0, then αf is CCP. If f and g are CCP functions and

there is an x such that f (x) + g(x) < ∞, then f + g is CCP. If f is a CCP function on Rn,

A ∈ Rn×m, and there is an x ∈ Rm such that f (Ax) < ∞, then g(x) = f (Ax) is CCP.
We say f : Rn→R∪{±∞} is differentiable if f : Rn→R (so f is not extended real-valued),

gradient ∇f (x) = [ ∂f
∂x1

(x), . . . , ∂f
∂xn

(x)]⊺ exists for all x ∈ Rn, and

lim
h→0

f (x + h) − f (x) − 〈∇f (x),h〉
‖h‖ = 0

for all x ∈ Rn. A differentiable function f is convex if and only if

f (y) ≥ f (x) + 〈∇f (x),y − x〉 ∀x,y ∈ Rn.

In other words, f is convex if its first-order Taylor expansion is a global lower bound

of f. A twice continuously differentiable function f is convex if and only if ∇2f (x) � 0

for all x ∈ Rn. (By the classic Schwarz’s theorem, ∇2f (x) ∈ Rn×n is symmetric when f

is twice continuously differentiable.) Intuitively speaking, ∇2fmeasures curvature, and

f is convex if f is flat or has upward curvature everywhere. If f is a one-dimensional

differentiable function, f is convex if and only if f′(x) is monotonically nondecreasing.

See the bibliographical notes for further discussion.

Write

argmin f =

{

x ∈ Rn
�

�

�

�

f (x) = inf
z∈Rn

f (z)
}

for the set of minimizers of f. When f is CCP, argmin f is a closed convex set, possibly

empty. When f is strictly convex, argmin f has at most one point.

For S ⊆ Rn, define the indicator function

δS(x) =
{

0 if x ∈ S
∞ otherwise.

If S is convex, closed, and nonempty, then δS is CCP.

1.3.5 Convex Optimization Problems

An unconstrained optimization problem

minimize
x∈Rn

f (x)
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8 1 Introduction and Preliminaries

is convex if f is a convex function. We call f the objective function. The constrained

optimization problem

minimize
x∈Rn

f (x)
subject to x ∈ C

is convex if f is a convex function and C is a convex set. We call x ∈ C the constraint.

When C is an affine set of the form {x |Ax = b}, we also write

minimize
x∈Rn

f (x)
subject to Ax = b.

In these problems, x ∈ Rn is the optimization variable. If a solution to an optimiza-

tion problem exists, write superscript ⋆ to denote a solution. So if x is the optimization

variable, x⋆ denotes a solution. If u is the optimization variable, u⋆ denotes a solution.

Indicator functions allow us to move the constraint into the objective function and

treat a constrained problem as an unconstrained problem:

minimize
x∈Rn

f (x) + δC(x).

This use of indicator functions and extended value functions greatly simplifies the

notation.

1.3.6 Subgradient

We say g ∈ Rn is a subgradient of a convex function f at x if

f (y) ≥ f (x) + 〈g,y − x〉 ∀y ∈ Rn. (1.2)

In other words, a subgradient provides an global affine lower bound of f. We call (1.2)

the subgradient inequality. The subdifferential of a convex function f at x is

∂f (x) = {g ∈ Rn | f (y) ≥ f (x) + 〈g,y − x〉, ∀y ∈ Rn}.

In other words, ∂f (x) is the set of subgradients of f at x. It is straightforward to see that

∂f (x) is a closed convex set, possibly empty. A convex function f is differentiable at x if

and only if ∂f (x) is a singleton.
By definition, x⋆ ∈ argmin f if and only if 0 ∈ ∂f (x⋆). This fact, called Fermat’s rule,

illustrates why subgradients are central in convex optimization.

Example 1.4 The absolute value function is differentiable everywhere except at 0.
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1 Introduction and Preliminaries 9

Example 1.5 At x1 the convex function f is differentiable and ∂f (x1) = {∇f (x1)}. At x2, f is
not differentiable and has many subgradients.

Example 1.6 Let C ⊆ Rn be a closed convex set. Then ∂δC(x) = �C(x), where

�C(x) =
{

∅ if x < C
{y | 〈y,z − x〉 ≤ 0 ∀z ∈ C} if x ∈ C

is the normal cone operator. For x ∈ intC, �C(x) = {0}, and for x < C, �C(x) = ∅; �C(x) is
nontrivial only when x is on the boundary of C.

In this book, we will not pay too much attention to the meaning of �C. Rather, we use �C
as notational shorthand for ∂δC.

We say a convex f is subdifferentiable at x if ∂f (x) , ∅. When f is convex and

proper, ∂f (x) = ∅ where f (x) = ∞. When f is convex and proper, ∂f (x) , ∅ for any

x ∈ ri dom f. So a convex and proper function is not subdifferentiable outside its domain,

is subdifferentiable within the relative interior of its domain, and may or may not be

subdifferentiable on the relative boundary of its domain.

Example 1.7 The CCP function f defined as

f (x) =
{

−
√
x for x ≥ 0

∞ for x < 0

is not subdifferentiable at x = 0. The slope is −∞, but we do not allow infinite gradients.
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10 1 Introduction and Preliminaries

Several standard identities for gradients also hold for subdifferentials. Let f be CCP

and α > 0. Then

∂(αf )(x) = α∂f (x).

Let f be CCP and R(A) ∩ ri dom f , ∅. If g(x) = f (Ax), then

∂g(x) = A⊺∂f (Ax). (1.3)

Let f and g be CCP and dom f ∩ int dom g , ∅. Then

∂( f + g)(x) = ∂f (x) + ∂g(x). (1.4)

To clarify, ∂f (x) + ∂g(x) is the Minkowski sum of the sets ∂f (x) and ∂g(x). Without the

regularity conditions involving interiors, we can say

∂g(x) ⊇ A⊺∂f (Ax), ∂( f + g)(x) ⊇ ∂f (x) + ∂g(x).

Using the operator notation we define in §2, we can more concisely write

∂αf = α∂f, ∂g = A⊺∂fA, ∂( f + g) = ∂f + ∂g,

provided the regularity conditions involving interiors hold.

1.3.7 Regularity Conditions

Say we have a mathematical statement “If P then Q”. Then, if P “usually” holds, then

Q “usually” holds. In this case, we say P is a regularity condition, since P is satisfied

in the usual “regular” case. We just saw an example of this; if the regularity condition

dom f ∩ int dom g , ∅ holds, then the identity ∂( f + g) = ∂f + ∂g holds.
Statements in this book involving interiors and relative interiors can be considered

regularity conditions. We keep track of these conditions, as they are necessary for a

rigorous treatment of the subject. However, we do not focus on them.

1.3.8 Conjugate Function, Strong Convexity, and Smoothness

Define the conjugate function of f as

f ∗(y) = sup
x∈Rn

{〈y,x〉 − f (x)} ,

which is also known as the Fenchel conjugate or Legendre–Fenchel transform. When

f is CCP, f ∗ is CCP and f ∗∗ = f; that is, the conjugate is CCP and the conjugate of the

conjugate function is the original function. We call f ∗∗ the biconjugate of f. Note that

we use the symbol ∗ for the notion of conjugate or dual, while we use the symbol ⋆ for

the notion of optimality.
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