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1
Human

Problem 1 Human Eye

How do we see?
What kind of glasses might we need?
When can we distinguish between the two eyes of a cat during the night?

A schematic view of the structure of the human eye is presented in Figure 1.1. Light
rays that refract at the cornea and eye lens end up at the retina, which produces
nerve impulses sent to the brain down the optic nerve. In a simplified model of
an eye, the cornea and eye lens can be replaced with one converging lens (called
simply the lens in the remainder of the text) while the retina can be modeled as
a disk of radius R = 1.00 cm, the axis of which coincides with the optical axis of

Figure 1.1 Scheme of the structure of the human eye: (1) cornea, (2) eye lens, (3)
retina, (4) optic nerve, (5) ciliary muscles, (6) suspensory ligament
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2 Human

the lens, as shown in Figure 1.2. The distance between the retina and the lens is
d = 2.40 cm. A human can adjust the focal length of the lens and therefore has
the capability of clearly seeing objects at different distances. This process is called
eye accommodation and is enabled by ciliary muscles connected to the eye lens
by a suspensory ligament. These muscles act to tighten or relax the ligaments and
therefore thin down or thicken the lens. Consequently the focal length of the lens
changes.

Figure 1.2 A simplified model of the human eye

(a) A human has regular eyesight if images of all objects from a distance larger
than d0 = 25.0cm can be formed at the retina. What is the range of the lens’
focal lengths for a human with regular eyesight?

(b) The maximal focal length fmax of the lens for a nearsighted man is smaller than
the upper limit of the range determined in part (a). This man uses glasses with
a diopter value of D1 = −1.00 m−1 to clearly see very distant objects. Deter-
mine fmax and find the maximal distance of an object that this man can clearly
see without using the glasses. For simplicity neglect the distance between the
glasses and the lenses.

(c) The minimal focal length fmin of the lens for a farsighted woman is larger than
the lower limit of the range determined in part (a). This woman needs glasses
with a diopter value of D2 = 2.00 m−1 to clearly see objects at a distance of
d0 = 25.0 cm. Determine fmin and find the minimal distance of an object that
this woman can clearly see without using the glasses.

(d) A person is nearsighted (farsighted) as well when the distance between the
retina and the lens is larger (smaller) than the regular distance of d = 2.40 cm.
Calculate the diopter value of the glasses that should be used by a man with a
distance between the retina and the lens of d1 = 2.50 cm (d2 = 2.30 cm).

Figure 1.3 With problem 1(e)
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Solution of Problem 1 3

(e) A man with regular eyesight whose height is h = 2.00 m is observing a tree of
height H = 2h (Figure 1.3). His view is directed toward the middle of the tree.
What is the minimal distance between the man and the tree that allows him to
see the whole tree?

Two types of light receptors are placed at the retina – rods (about N1 = 10
8 of

them) and cones (about N2 = 6 ·10
6 of them). Rods enable night vision, while cones

are used for vision during the day. Assume that a person can distinguish two distant
objects during the day (night) if their images are at different cones (rods). Assume
also that the cones (rods) are evenly distributed on the retina surface and that their
positions form a square lattice.

(f) Two point objects are at a mutual distance of a = 1.00 mm. The direction that
connects them is perpendicular to the optical axis of the lens (Figure 1.4). What
is the maximal distance from which a woman can distinguish between these two
objects during the day?

Figure 1.4 With problem 1(f)

(g) At what maximal distance can a woman read the license plates of a car during
the day? Assume that the license plates can be read if a woman can distinguish
between the point objects at a mutual distance of a = 1.00 cm.

(h) At what maximal distance can a woman distinguish between the two eyes of a
cat during the night? The eyes of a cat are at a mutual distance of a = 2.00 cm.

Solution of Problem 1

(a) To see an object at a distance p from the eye, a human needs to accommodate
the focal length of the lens so that the image of the object is formed at the
retina (which is at a distance l = d from the lens). For an object at a distance
p1 = d0 the focal length is given by lens equation 1

f1
= 1

p1
+ 1

l
. For an object

at a distance p2 → ∞ we have 1

f2
= 1

p2
+ 1

l
. From previous equations we obtain

f1 = 2.19cm and f2 = 2.40cm. Consequently the lens focal length of a human
with regular eyesight takes a range from f1 = 2.19 cm to f2 = 2.40 cm.

(b) The lens focal length and the distance of the object that the man clearly sees
are related by 1

f
= 1

p
+ 1

d
. Consequently, without the use of glasses, this man

cannot clearly see objects at a distance larger than pmax, where
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4 Human

1

fmax
=

1

pmax
+

1

d
. (1.1)

The focal length of the system lenses-glasses fns satisfies the relation 1

fns
=

1

f
+D1. When this man clearly sees very distant objects with the use of glasses,

the lens equation reads
1

fmax
+D1 =

1

p2

+
1

d
, (1.2)

where p2 → ∞. From equation (1.2) we obtain fmax = d
1−dD1

= 2.34 cm. By
subtracting equations (1.1) and (1.2) we find pmax =− 1

D1
= 1.00 m.

(c) Without the use of glasses, this woman cannot clearly see objects at a distance
smaller than pmin, where

1

fmin
=

1

pmin
+

1

d
. (1.3)

The lens equation for a woman with glasses looking at an object at a distance
d0 reads

1

fmin
+D2 =

1

d0

+
1

d
. (1.4)

From equation (1.4) it follows that

fmin =
1

1

d0
+ 1

d
−D2

= 2.29 cm. (1.5)

By subtracting equations (1.3) and (1.4) we obtain

pmin =
d0

1−D2d0

= 50.0 cm. (1.6)

(d) The lens equation for a man with regular distance between the lens and the
retina when he clearly sees an object at a distance p is 1

f
= 1

p
+ 1

d
. For a man

with distance di between the retina and the lens who uses glasses with diopter
value Di and clearly sees the same object when the lens focal length is the
same, we obtain 1

f
+Di =

1

p
+ 1

di
. Subtracting the previous two equations, we

find Di =
1

di
− 1

d
. Consequently, we find in the first case D1 =−1.67 m−1 and

in the second case D2 = 1.81 m−1.
(e) A man sees the whole tree when the size L of the image of the tree on the

retina is smaller than the retina diameter (Figure 1.5). Using the similarity of
the triangles in Figure 1.5 we obtain L

H
= d

x
, where x is the distance between the

man and the tree. Consequently the man sees the whole tree when L=H d
x
< 2R,

leading to x > Hd
2R

= 4.80 m.
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Problem 2 The Circulation of Blood 5

Figure 1.5 With the solution of problem 1(e)

(f) The number of cones per unit surface is equal to NS =
N2

R2π
. On the other hand,

since we assume that the positions of cones form a square lattice with lattice
constant b, we also have NS = 1

b2
. From the previous two equations it follows

that b = R
√

π
N2

= 7.24 µm. When the woman is at a maximal distance at which
she can still distinguish between the two objects, the images of the objects are
formed at two neighboring cones. From the similarity of triangles in Figure 1.6,
we find a

x
= b

d
– that is, x = ad

b
= 3.32 m.

Figure 1.6 With the solution of problem 1(f)

(g) From the solution of part (f) we have x = ad
b

, where in this case a = 1.00 cm,
leading to x = 33.2 m.

(h) Since the woman observes the cat during the night, the solution of part (f)
is modified only by replacing the number of cones with the number of rods.
Consequently, x = ad

√
N1

R
√

π
= 271 m.

We refer the reader interested in more details regarding the physics of the human
eye to chapter 12, reference [13].

Problem 2 The Circulation of Blood

How powerful is the human heart?
How does a bypass help in the case of arteriosclerosis?

The human cardiovascular system consists of the heart, the blood, and the blood
vessels. The heart pumps the blood through the blood vessels. The blood carries
nutrients and oxygen to and carbon dioxide away from various organs. The most
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6 Human

important portions of the cardiovascular system are pulmonary circulation and sys-
temic circulation. Pulmonary circulation pumps away oxygen-depleted blood from
the heart via the pulmonary artery to the lungs. It then returns oxygenated blood to
the heart via the pulmonary vein. Systemic circulation transports oxygenated blood
away from the heart through the aorta. The aorta branches to arteries that bring the
blood to the head, the body, and the extremities. The veins then return oxygen-
depleted blood to the heart. The direction of blood flow is determined by four heart
valves. Two of them are positioned between the antechambers and the chambers,
while two are located between the chambers and the arteries.

(a) The heart pumps blood by contraction of the muscles of the antechambers and
chambers. The blood pressure gradually increases from the minimal (diastolic)
value of pd = 80 mmHg to the maximal (systolic) value of ps = 120 mmHg
during contraction.

Figure 1.7 The graph of the dependence p(t)

The muscle then relaxes and the value of pressure suddenly decreases, as shown
in Figure 1.7. The heart contracts (beats) around 60 times a minute. Each con-
traction pumps around 75 ml of blood. The pump shown in Figure 1.8 is a
simple model of the heart. The heart decreases the volume during the con-
traction, which corresponds to the upward motion of the piston in the model.

Figure 1.8 A pump as a model of the heart
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Problem 2 The Circulation of Blood 7

Thereby the pressure increases and closes the input valves while it opens the
output valves. Determine the power of the heart.

The boundary between laminar and turbulent flow of blood is determined from
the Reynolds number, which is directly proportional to the speed of blood v. The
Reynolds number is a dimensionless quantity that depends as well on the density
of blood ρ = 1,060kg/m3, viscosity of blood η = 4.0 ·10

−3 Pa · s and the diameter
of the blood vessel D. The flow is turbulent if the Reynolds number is larger than
2,000, while it is laminar otherwise.

(b) Derive the expression for the Reynolds number using dimensional analysis.
Assume that the dimensionless constant that appears in front of the expression
is equal to 1.

(c) The diameter of the aorta is D = 10 mm. Calculate the maximal speed of
laminar blood flow in the aorta.

We consider next the laminar flow of blood through the artery whose shape is a
cylinder of length L and radius R, as shown in Figure 1.9. The flow of blood in the
artery is caused by the difference of pressures ∆p at the ends of the artery, which
is a consequence of blood pumping from the heart. The blood does not slide at the
walls of the artery. For this reason, a cylindrical layer of blood that is at rest is
formed near the wall of the artery. The viscosity of the blood causes laminar flow
where each layer slides between neighboring layers. The viscosity force between
the layers F is given by Newton’s law,

F = ηS
∆v

∆r
,

where η is the viscosity of the blood, S is the area of the layer that is in contact with
the neighboring layer, and ∆v/∆r is the gradient of speed in the radial direction.
The walls of the artery are inelastic and the speed of flow does not change between
the points on the same line in the direction of the artery.

Figure 1.9 Artery

(d) Determine the dependence of the speed of blood on the distance from the artery
axis.

(e) Using the analogy of electrical resistance, one can define the resistance of blood
flow as the ratio of the pressure difference and the volume flow caused by this
difference of pressures. Determine the blood flow resistance through the artery.
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8 Human

(f) As a consequence of arteriosclerosis, the inner diameter of a part of the
artery decreased from d1 = 6.0 mm to d2 = 4.0 mm. How many times was
the blood flow resistance increased in this part of the artery? To reduce
the blood flow resistance, a bypass can be introduced. A healthy artery
or vein is removed from another part of the patient’s body and attached
in parallel to this part of the artery. Assume that the bypass is of the
same length as this part of the artery. How many times does the blood
flow resistance decrease after the introduction of a bypass of diameter
d3 = 5.0 mm?

When the blood enters the artery, the speed of the blood is nearly the same
throughout the cross-section of the artery. This means that the blood needs to
accelerate and decelerate to reach the regime considered in previous parts of the
problem. The blood near the artery walls decelerates to zero speed, while the part
in the center of the artery accelerates to the maximal value of the speed. Consider
the situation when we neglect the viscosity and when the blood accelerates along the
artery.

(g) Determine the relation between the pressure difference ∆p at the ends of the
artery and the change of volume flow ∆q/∆t as a function of blood density ρ ,
the length of the artery L, and its radius R.

(h) As in part (e), the analogy with electrical circuits can be also introduced in part
(g). Which element of the electric circuit can be used to describe the relation
determined in part (g)?

Solution of Problem 2

(a) The work performed by the pump when the piston moves by ∆r is

∆A = F∆r =
F

S
∆rS = p∆V . (1.7)

The work performed by the heart is equal to the area under the graph of the
function p(V ). The heart performs 60 beats per minute, which is 1 beat per
second. Consequently the heart pumps in V = 75 ml of blood each second.
Therefore, the graph of the function p(V ) looks as shown in Figure 1.10. The
work performed by the heart during 1 beat is

A = pdV +
1

2
(ps − pd)V =

1

2
(ps + pd)V = 1.0 J . (1.8)

The work A is performed by the heart during t = 1 s, which means that the
corresponding power is P = A/t = 1 J/1 s = 1.0 W .
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Solution of Problem 2 9

Figure 1.10 The graph of the function p(V )

(b) We can find the expression for the Reynolds number using dimensional analysis

Re = vρα ηβ Dγ ⇒ 1 = [m · s−1] [kg ·m−3]α [kg ·m−1s−1]β [m]γ , (1.9)

which leads to the system of equations

1−3α −β + γ = 0,−1−β = 0,α +β = 0 , (1.10)

whose solution is (α,β ,γ) = (1,−1,1). Therefore, the Reynolds number is
given by the expression

Re =
ρvD

η
. (1.11)

(c) The maximal speed of blood in the aorta is obtained for Re = 2,000 and reads

v =
ηRe
ρD

= 75
cm
s

. (1.12)

The Reynolds number reaches the critical value when the valves of the aorta
open. The blood is then under big pressure and reaches a speed as high as
120 cm/s. So-called Korotkoff sounds appear then as a consequence of tur-
bulent flow. These can be heard using a stethoscope. This fact is used when
blood pressure is measured using a sphygmomanometer.

(d) The system has cylindrical symmetry. Consequently the speed of blood is con-
stant in each thin cylindrical layer. Consider the part of blood in the shape of
a cylinder of radius r. This part of blood in the artery moves due to pressure
difference ∆p, which yields the force F1 = πr2∆p. The magnitude of the vis-
cosity force that acts on this layer is F2 = 2πrLη ∆v

∆r
. Since each layer of blood

is moving at a constant velocity, we obtain from Newton’s first law that

F1 = F2 ⇒ ∆v =
∆p

2ηL
r∆r . (1.13)

By transforming the equation (1.13) to differential form and performing inte-
gration with the boundary condition v(R) = 0, we obtain the dependence of the
speed of blood on the distance from the axis of the artery:
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10 Human

v(r) =
∆p

4ηL
(R2 − r2) . (1.14)

(e) The flow of blood through the ring of width dr, which is located in the region
between r and r+dr, is v(r)dS, where dS = 2πrdr is the area of that ring. The
flow of blood through the artery is then obtained by performing the integration
over all rings, which leads to

q =
∫ R

0

v(r)2πrdr =
∫ R

0

π∆p

2ηL
(rR2 − r3)dr =

π∆pR4

8ηL
, (1.15)

and consequently the blood flow resistance is

R=
∆p

q
=

8ηL

πR4
. (1.16)

(f) Due to arteriosclerosis the blood flow resistance in the sick part of the artery
R2 increases in comparison to the resistance in the healthy artery R1, which
leads to

R2

R1

=

(

d1

d2

)4

= 5.1 . (1.17)

After the bypass is introduced, the sick part of the artery and the bypass
form a parallel connection of two resistors with equivalent resistance Re. The
resistance then reduces by

R2

Re

=
R2

R2R3

R2+R3

= 1+

(

d3

d2

)4

= 3.4 . (1.18)

(g) Newton’s second law applied to the blood in the artery gives:

m
∆v

∆t
= ∆pS , (1.19)

where m = ρV = ρLπR2 is the mass of the blood in the artery, ∆v/∆t is the
change of the speed of blood along the artery, and S = πR2 is the area of the
inner cross-section of the artery. The change of flow is ∆q=∆(R2πv)= πR2∆v,
which along with equation (1.19) gives

∆p =

(

ρL

πR2

)

∆q

∆t
. (1.20)

(h) One can conclude from part (e) that the change of pressure is analogous to
the potential difference, while the flow of blood is analogous to the electrical
current. Consequently equation (1.20) is analogous to the equation

∆ϕ = L ∆I

∆t
, (1.21)
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