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1 | Real Numbers and Functions

Calculus can be described as the study of how one quantity is affected by another,

focusing on relationships that are smooth rather than erratic. This chapter sets up

the basic language for describing quantities and the relationships between them.

Quantities are represented by numbers and you would have seen different kinds of

numbers: natural numbers, whole numbers, integers, rational numbers, real numbers,

perhaps complex numbers. Of all these, real numbers provide the right setting for the

techniques of calculus and so we begin by listing their properties and understanding

what distinguishes them from other number systems. The key element here is the

completeness axiom, without which calculus would lose its power.

The mathematical object that describes relationships is called “function.” We recall

the definition of a function and then concentrate on functions that relate real numbers.

Such functions are best visualized through their graphs, and this visualization is a key

part of calculus. We make a small beginning with simple examples. A more thorough

investigation of graphs can only be carried out after calculus has been developed to a

certain level. Indeed, the more interesting functions, such as trigonometric functions,

logarithms, and exponentials, require calculus for their very definition.

1.1 Field and Order Properties

We begin with a review of the set R of real numbers, which is also called the

Euclidean line. It is a “review” in that we do not construct the set but just list its key

attributes, and use them to derive others. For descriptions of how real numbers can be

constructed from scratch, you can consult Hamilton and Landin [11], Mendelson [24],

or most books on real analysis. The fundamental ideas underlying these constructions

are easy to absorb, but the checking of details can be arduous. You would probably

appreciate them more after reading this book.

What is the need for this review? Mainly, it is intended as a warm-up session before

we begin calculus proper. Many intricate definitions and proofs lie in wait later, and

we need to get ready for them by practising on easier material. If you are in a hurry

and confident of your basic skills with numbers and proofs, you may skip ahead to

the next section, although a patient reading of these few pages would also help in

later encounters with linear algebra and abstract algebra.
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2 Calculus

Field Properties of Real Numbers

Any concept of “numbers” involves rules for combining them to create new ones. We

shall use the term binary operation to denote a rule for associating a single member

of a set to each pair of elements from that set.

R
10

The set R is equipped with two binary operations, + (addition) and · (multiplication),

and has two special elements named zero (0) and one (1), with the following

fundamental properties:

R1. Addition and multiplication are commutative: a + b = b + a and a · b = b · a for every

a,b ∈ R.

R2. Addition and multiplication are associative: a + (b + c) = (a + b) + c and a · (b · c) =
(a · b) · c for every a,b, c ∈ R.

R3. 0 serves as identity for addition: 0 + a = a for every a ∈ R.

R4. 1 serves as identity for multiplication: 1 · a = a for every a ∈ R.

R5. Each a ∈ R has an additive inverse b ∈ R, with the property a + b = 0.

R6. Each non-zero a ∈ R has a multiplicative inverse c ∈ R, with the property a · c = 1.

R7. Multiplication distributes over addition: a · (b+ c) = (a · b)+ (a · c) for every a,b, c ∈R.

The properties R1 to R7 are called the field axioms for R. In general, if a set F has two

binary operations + and ·, such that these seven properties hold (with R replaced by

F everywhere), then F is called a field. Other familiar examples of fields are the set Q

of rational numbers and the set C of complex numbers. Each field has its own binary

operations and its own special elements called zero and one.

Example 1.1.1

Consider the set F2 = {0,1} of just two elements named 0 and 1. Can we provide it

with with binary operations + and · such that it becomes a field in which 0 is the

additive identity and 1 is the multiplicative identity? Well, since 0 is to be the additive

identity, we must set

0 + 0 = 0, 0 + 1 = 1 + 0 = 1.

What should be the additive inverse of 1? It obviously cannot be 0, so it must be 1.

This gives 1 + 1 = 0. Therefore + is represented by following table.

+ 0 1

0 0 1

1 1 0
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Real Numbers and Functions 3

Similarly, since 1 is to be the multiplicative identity, we must have

1 · 1 = 1, 1 · 0 = 0 · 1 = 0.

We also compute 0 · 0 as follows:

0 · 0 = 0 · 0 + 0 · 1 = 0 · (0 + 1) = 0 · 1 = 0.

Hence · is represented by the following table.

· 0 1

0 0 0

1 0 1

Let us verify that F2 really is a field. The commutativity of the two operations is

clearly built into their definitions. We also see that 0 is the additive identity and 1 is

the multiplicative identity. The additive and multiplicative inverses are also present.

Only the associative and distributive laws have to be verified. Let a,b, c ∈ F2. Consider

the following cases:

a = 0 =⇒ a + (b + c) = 0 + (b + c) = b + c = (0 + b) + c = (a + b) + c,

b = 0 =⇒ a + (b + c) = a + (0 + c) = a + c = (a + 0) + c = (a + b) + c,

c = 0 =⇒ a + (b + c) = a + (b + 0) = a + b = (a + b) + 0 = (a + b) + c,

a = b = c = 1 =⇒ a + (b + c) = 1 + (1 + 1) = (1 + 1) + 1 = (a + b) + c.

So + is associative. We ask you to verify in a similar fashion the associativity of · as

well as the distributive law. �

The set of non-zero real numbers is denoted by R∗. We shall usually abbreviate a · b

to ab.

Theorem 1.1.2

The field R has the following properties.

1. 0 is the only additive identity and 1 is the only multiplicative identity.

2. The additive inverse of any real number is unique.

3. The multiplicative inverse of any non-zero real number is unique.

7 The important thing is to realize that these claims need proof, and then to prove them using
only the field axioms.

Proof. Suppose 0′ and 1′ are additive and multiplicative identities, respectively. Then

we have

0′ = 0 + 0′ (because 0 is an additive identity)

= 0 (because 0′ is an additive identity).
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4 Calculus

Similarly, we have 1′ = 1′ · 1 = 1. This shows the uniqueness of 0 and 1 as identities for

addition and multiplication.

Next, suppose a has additive inverses b and c. Then a + b = 0 and a + c = 0. Hence,

b = b + 0 = b + (a + c) = (b + a) + c = 0 + c = c.

This shows the uniqueness of the additive inverse. You can similarly show the

uniqueness of the multiplicative inverse. �

Having established that the inverses are unique, we can give them special names.

We shall denote the additive inverse of a by −a and the multiplicative inverse by 1/a

or a−1.

Theorem 1.1.3 (Cancellation Laws)

Let a,b, c ∈ R. Then the following hold:

1. If a + b = a + c then b = c.

2. If ab = ac and a 6= 0 then b = c.

Proof. The cancellation laws are based on associativity and the existence of inverses.

a + b = a + c =⇒ (−a) + (a + b) = (−a) + (a + c) (existence of inverse)

=⇒ ((−a) + a) + b = ((−a) + a) + c (associativity)

=⇒ 0 + b = 0 + c (property of inverse)

=⇒ b = c (property of identity).

If a 6= 0 then it has a multiplicative inverse a−1 and we have

ab = ac =⇒ a−1(ab) = a−1bc =⇒ (a−1a)b = (a−1a)c

=⇒ 1 · b = 1 · c =⇒ b = c.

You should provide the justification for each step, as we had done for the case of

addition. �

Theorem 1.1.4

Let a,b, c ∈ R. Then the following hold:

1. 0 · a = 0.

2. −(−a) = a.

3. If a ∈ R∗ then (a−1)−1 = a.

4. (−1)a = −a.

5. (−1)(−1) = 1.
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Real Numbers and Functions 5

6. (−a)(−b) = ab.

7. If ab = 0 then a = 0 or b = 0.

Proof.

1. Use 0 = 0 + 0:

a · 0 = a · (0 + 0) = (a · 0) + (a · 0) =⇒ 0 + (a · 0) = (a · 0) + (a · 0) =⇒ 0 = a · 0.

2. If we let b = −(−a) we have b + (−a) = 0. We also have a + (−a) = 0. We apply

cancellation to get b = a.

3. Let b = (a−1)−1, so that a−1b = 1. We also have a−1a = 1. Apply cancellation.

4. We have to show that (−1)a is the additive inverse of a. So we add them:

(−1)a + a = (−1) · a + 1 · a = ((−1) + 1) · a = 0 · a = 0.

5. Substitute a = −1 in the previous statement.

6. (−a)(−b) =
(

a(−1)
)(

(−1)b
)

= a
(

(−1)
(

(−1)b
))

= a
((

(−1)(−1)
)

b
)

= a(1 ·

b) = ab.

7. We will show that if a 6= 0 then we must have b = 0. So at least one of a = 0 and

b = 0 must hold.

a 6= 0 =⇒ a−1(ab) = a−10 =⇒ (a−1a)b = 0 =⇒ 1 · b = 0 =⇒ b = 0.

�

Task 1.1.5

Verify that −(a + b) = (−a) + (−b) and (ab)−1 = a−1b−1.

For any a,b ∈ R, the sum a + (−b) is denoted by a − b and is called the difference

of a and b. The process of obtaining a − b is called subtraction. Similarly, if b ∈ R∗, the

product a · (1/b) is denoted by a
b or a/b and is called the ratio of a and b. The process

of obtaining a/b is called division.

The square of a number x is its product with itself and is denoted by x2.

Task 1.1.6

Show that (−x)2 = x2.

Task 1.1.7

Use the field axioms of R to prove the following:

(a) −
a

b
=

−a

b
=

a

−b
if b 6= 0, (b)

a

b
+

c

d
=

ad + bc

bd
if b,d 6= 0.
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6 Calculus

Order Properties of Real Numbers

Since the field axioms of R are also satisfied by Q and C, we know that they do not

completely determine the real numbers. What else is special about R?

The non-zero real numbers R∗ split into two types: positive and negative. We shall

denote the set of positive real numbers by R+ and the set of negative real numbers by

R−. The key facts associated with this split are as follows.

R8. Every non-zero real number is either positive or negative.

R9. Zero is neither positive nor negative.

R10. No real number is both negative and positive.

R11. A real number is negative if and only if its additive inverse is positive.

R12. The sum and product of positive numbers are positive.

«
Complex numbers cannot be split into positive and negative ones in this manner. For,
one of ±i would be positive, as well as one of ±1. Hence both −1 = i2 = (−i)2 and
1 = 12 = (−1)2 would be positive!

The properties R8 to R12 are called the order axioms of R. Let us see some of their

consequences.

Theorem 1.1.8

1. If x,y ∈ R− then x + y ∈ R−.

2. If x,y ∈ R− then xy ∈ R+.

3. If x ∈ R+ and y ∈ R− then xy ∈ R−.

4. If x ∈ R∗ then x2 ∈ R+.

5. 1 ∈ R+.

7
Again, these are familiar properties, which you were asked to memorize in school. We wish
to convert them to proven facts. We treat the first two to show you the way, and leave the
others as exercises.

Proof. x,y ∈ R− =⇒ −x,−y ∈ R+ =⇒ (−x) + (−y) ∈ R+

=⇒ x + y = −((−x) + (−y)) ∈ R−.

x,y ∈ R− =⇒ −x,−y ∈ R+ =⇒ (−x)(−y) ∈ R+

=⇒ xy = (−x)(−y) ∈ R+.

�

The split into positive and negative allows us to think of larger and smaller real

numbers (an “ordering”) as follows. We say that a is greater than b, denoted by a > b,

if a − b ∈ R+. In this case, we also say that b is less than a and denote that by b < a.
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Real Numbers and Functions 7

Theorem 1.1.9

Let a,b, c ∈ R. Then the following hold.

1. R+ = { x ∈ R | x > 0} and R− = { x ∈ R | x < 0}.

2. (Trichotomy) Exactly one of the following holds: a = b or a > b or a < b.

3. (Transitivity) If a > b and b > c then a > c.

4. If a > b then a + c > b + c.

5. Let c > 0. If a > b then ac > bc.

6. Let c < 0. If a > b then ac < bc.

7. If a < b then a <
a + b

2
< b.

8. If 0 < a < b then 0 < 1/b < 1/a.

9. Suppose a,b > 0. Then a > b ⇐⇒ a2
> b2.

10. Suppose a,b > 0. Then a = b ⇐⇒ a2 = b2.

Proof.

1. We have x > 0 ⇐⇒ x − 0 ∈ R+ ⇐⇒ x ∈ R+. We similarly obtain the description

of R−.

2. First, we note that a = b implies a − b = 0, which rules out a > b as well as a < b.

Now let a,b be distinct real numbers. We have to prove that exactly one of

a > b and a < b holds. Since a,b are distinct, a − b 6= 0. Therefore a − b belongs to

exactly one of R+ and R−. Now a − b ∈ R+ corresponds to a > b and a − b ∈ R−

corresponds to a < b.

3. Hint: Consider a − c = (a − b) + (b − c).

4. Hint: Consider (a + c)− (b + c) = a − b.

5. Hint: Consider ac − bc = (a − b)c.

6. As above.

7. Hint: Add a to both sides of a < b to get one of the inequalities. Add b instead to

get the other.

8. Hint:
1

a
−

1

b
=

b − a

ab
.

9. Hint: b2 − a2 = (b − a)(b + a).

10. As above. �
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8 Calculus

« Note that item 7 of this theorem implies that there are infinitely many real numbers
between any two distinct ones.

Let A be a subset of R.

• An element M ∈ A is called the maximum of A if a ≤ M for every a ∈ A. We write

M = max(A).

• An element m ∈ A is called the minimum of A if m ≤ a for every a ∈ A. We write

m = min(A).

A maximum element is also called greatest while a minimum element is also called

least.

Example 1.1.10

Let A = { x ∈ R | x ≤ 1}. Then 1 is the maximum of A. �

Task 1.1.11

Let A = { x ∈ R | x < 1}. Show that A has no maximum.

Absolute Value

Let us continue this overview of familiar facts about the real numbers by recalling the

definition of the absolute value of a real number x,

|x| =

{

x if x ≥ 0,

−x if x < 0.

We think of a real number as having two aspects: a direction determined by whether it

is positive or negative, and a magnitude given by its absolute value.

R
x−x 0

|x||x|

Theorem 1.1.12

Let x,y ∈ R. Then we have the following.

1. |x| ≥ 0.

2. |x| = 0 if and only if x = 0.

3. |x2| = |x|2 = x2.

4. |xy| = |x||y|.

5. (Triangle Inequality) |x + y| ≤ |x|+ |y|.

6. |x − y| ≥ ||x| − |y||.
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Real Numbers and Functions 9

Proof. The first two claims are obvious from the definition. Proofs for the others are

given below. We make use of the fact that if a,b ≥ 0 then a = b ⇐⇒ a2 = b2.

3. Since x2 ≥ 0, we have |x2| = x2. Further,

|x|2 =

{

x2 if x ≥ 0

(−x)2 if x < 0
= x2.

4. |xy|2 = (xy)2 = x2y2 = |x|2|y|2 = (|x||y|)2.

5. |x + y|2 = (x + y)2 = x2 + y2 + 2xy ≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

6. |x − y|2 = (x − y)2 = x2 + y2 − 2xy ≥ |x|2 + |y|2 − 2|x||y| = (|x| − |y|)2 = ||x| −
|y||2. �

Task 1.1.13

For any x, a ∈ R with a ≥ 0, prove that |x| ≤ a ⇐⇒ −a ≤ x ≤ a.

Since we think of |x| as the magnitude or size of a real number, |x − y| becomes

a measure of the gap between x and y. We call it the distance between x and y. The

properties of absolute value convert to the following properties of distance.

Theorem 1.1.14

Let x,y,z ∈ R. Then we have the following:

1. (Positivity) |x − y| ≥ 0, and |x − y| = 0 if and only if x = y.

2. (Symmetry) |x − y| = |y − x|.

3. (Triangle Inequality) |x − z| ≤ |x − y|+ |y − z|.

Proof. This is left as an exercise for you. �

Types of Real Numbers

The set of real numbers includes various special types of numbers:

• By repeatedly adding 1 we generate the subset of natural numbers,

N = {1,2 = 1 + 1,3 = 2 + 1, . . .}.

By combining (5) of Theorem 1.1.8 and (4) of Theorem 1.1.9 we see that 1 < 2 <

3 < · · · .

• By including zero with natural numbers we get whole numbers,

W = N ∪ {0} = {0,1,2, . . .}.
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10 Calculus

• By further including the additive inverse of each whole number we get integers,

Z = {. . . ,−2,−1,0,1,2, . . .}.

• By dividing integers with each other we get rational numbers,

Q = { a/b | a,b ∈ Z and b 6= 0}.

Some examples of rational numbers are
8

6
,

12

9
,
−4

3
,

4

−3
, and

2

1
.

Task 1.1.15

Let a,b, c,d ∈ Z with b,d 6= 0. Show that
a

b
=

c

d
⇐⇒ ad = bc.

The positive rational numbers will be denoted by Q+. Any x ∈ Q+ can be expressed

as x = p/q with p,q ∈ N.

« Some mathematicians include 0 in the set of natural numbers itself. So be careful when you
see someone using N, and check whether or not they include 0.

Those real numbers that are not rational numbers are called irrational numbers. At

this point in this text, we still do not know enough about real numbers to be able to

say whether there are any irrational numbers! This will be clarified in the next section.

Mathematical Induction

We make a small digression to recall some important facts about natural numbers.

Principle of Mathematical Induction: If A is a subset of N that contains 1 and is

closed under adding 1 then A = N. Alternately: If P(n) is a statement about n

(for every natural number n) such that P(1) is true and the truth of P(n) implies

the truth of P(n + 1), then P(n) is true for every natural number n.

Mathematical induction is used to prove statements that hold for every natural

number. As an example, we will use it to better understand integer powers of real

numbers.

Example 1.1.16

We define integer powers as follows: First, we define x0 = 1 for any x ∈ R. Then, for

any n ∈ N, we define xn = x · xn−1. If x 6= 0, we define x−n = (xn)−1. We will use

induction to prove the following:

If x 6= 0 and n ∈ N then (x−1)n = (xn)−1.

Let P(n) be the statement that (x−1)n = (xn)−1. Then P(1) is the statement x−1 =
x−1, which is certainly true. Now assume that some P(n) is true (this is called the
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