Spatial Analysis

A Guide for Ecologists

Third Edition

Designed for researchers in ecology at all levels and career stages, from students and postdoctoral fellows to seasoned professionals, this third edition reflects the significant advances in quantitative analysis of the past decade. It provides updated examples and methods, with reduced emphasis on older techniques that have seen limited use in recent ecological literature. The authors cover new and emerging approaches, including Hierarchical Bayesian analysis and spatio-temporal methods. A key feature is the integration of ecological and statistical concepts, highlighting the critical role that this type of analysis plays in ecological understanding. The book provides up-to-date summaries of methodological advancements in spatial and spatio-temporal analysis, along with insights into future developments in areas such as spatial graphs, multilevel networks and machine learning applications. It also offers practical examples and guidance to help researchers select, apply and interpret the appropriate methods.

Mark R. T. Dale is Professor of Ecosystem Science and Management at the University of Northern British Columbia, Canada, where he has served in several administrative roles. His research interests are based on the spatial structure of plant communities and include the development of quantitative methods to answer ecological questions. His work on plant community structure and the dynamics of spatial pattern development has led to significant contributions in the application of graph theory and the study of ecological networks. He is the author of *Applying Graph Theory in Ecological Research* (Cambridge University Press, 2017) and co-author of *Quantitative Analysis of Ecological Networks* (Cambridge University Press, 2021).

Marie-Josée Fortin is University Professor in the Department of Ecology and Evolutionary Biology at the University of Toronto. She is a Fellow of the Royal Society of Canada and holds a Tier 1 Canada Research Chair in Spatial Ecology. Her research is at the interface of spatial ecology and conservation biology, including modelling connectivity in urban environments, ecosystem services and forest resilience. She is co-author of *Quantitative Analysis of Ecological Networks* (Cambridge University Press, 2021).

Cambridge University Press & Assessment 978-1-009-15867-1 — Spatial Analysis 3rd Edtion Mark R. T. Dale , Marie-Josée Fortin Frontmatter <u>More Information</u>

Spatial Analysis

A Guide for Ecologists

Third Edition

MARK R. T. DALE University of Northern British Columbia

MARIE-JOSÉE FORTIN University of Toronto

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009158671

DOI: 10.1017/9781009158688

First edition © Marie-Josée Fortin and Mark R. T. Dale 2005 Second edition © Mark R. T. Dale and Marie-Josée Fortin 2014 Third edition © Mark R. T. Dale and Marie-Josée Fortin 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781009158688

First published 2005 9th printing 2013 Second edition 2014 Third edition 2025

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-15867-1 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For EU product safety concerns, contact us at Calle de José Abascal, 56, 1°, 28003 Madrid, Spain, or email eugpsr@cambridge.org

Contents

Preface

1

2

nage	X1
page	

Ecol	ogical P	Processes	1
Intro	oduction	1	1
1.1	Spatial	l Processes	1
1.2	Ecolog	gical Processes	4
	1.2.1	Spatial Patterns along Gradients	5
	1.2.2	Spatial Associations among Species	6
1.3	Plant (Community Spatial Structure	9
1.4	Spatial	l Processes by the Level of Organization	13
1.5	How t	o Use This Book	16
Spat	tial Conc	cepts and Notions	20
Intro	oduction	l	20
2.1	The S ₁	patial Context	23
2.2	Ecolog	gical Data	23
2.3	Spatia	l Structure: Spatial Dependence and Spatial Autocorrelation	26
2.4	Spatial	l Scales	28
2.5	Sampl	ing Design	31
	2.5.1	The Sample Size (the Number of Observations 'n')	31
	2.5.2	Spatial Resolution: Grain and Extent	31
	2.5.3	The Size and Shape of the Sampling Units	32
	2.5.4	Sampling Design	33
	2.5.5	The Location in the Landscape	33
		Spatial Lag	33
		Multiscalar Analysis	35
	2.5.8	Effects of Edges	36
2.6		•	37
2.7	Scaling	g	38
2.8	Spatial	l Neighbours	40
		Lattice-based Neighbours	40
	2.8.2	Topological Neighbours	40
	2.8.3	i C	44
	2.8.4	Directional Angle-based Spatial Graphs	48

vi	Contents		
	2.9 Spatial Statis	tics	49
	2.9.1 First-	order Statistics	49
	2.9.2 Secon	nd-order Statistics	50
	2.10 Ecological H	ypotheses and Spatial Analysis	52
		on Tests for Spatially Structured Ecological Data	54
		ricted Randomizations	55
		kov Chain Monte Carlo	58
	2.12 Concluding I	Remarks	58
3	Spatial Analysis of I	Point and Quadrat Data	60
	Introduction		60
	3.1 Mapped Point	Data	60
	3.1.1 Introdu	action: Three Basic Patterns	61
	3.1.2 Distan	ces to Neighbours	62
		d Nearest Neighbour Analysis	62
	3.1.4 Second	I-order Point Pattern Analysis	63
	3.1.5 Bivaria	ate Data	66
		ng or Combining	68
	3.1.7 Multiv	ariate Point Pattern Analysis Data	69
	3.2 <i>K</i> -function An	alysis for Inhomogeneous Point Patterns	73
	3.2.1 Region	al Expected Values around Events	73
	3.2.2 Region	al Values for Subareas of the Study Plot	74
	3.3 Mark Correlat		75
	3.4 Point Patterns	in One and Three Dimensions	76
	3.4.1 One D	imension	76
	3.4.2 Three	Dimensions	79
	3.5 Circumcircle M	Methods	80
	3.6 Areal Unit An	alysis	81
	3.6.1 Quadra	at Variance Methods	81
	3.6.2 Two or	r More Species	84
	3.6.3 Two o	r More Dimensions	86
	3.7 Spectral Analy	vsis and Related Techniques	88
	3.8 Wavelets		89
	3.9 Concluding Re	emarks	90
4	Spatial Analysis of S	Sample Data	97
	Introduction		97
	4.1 Join Count Sta	itistics	98
	4.1.1 Join C	ount Statistics for k-categories	100
	4.2 Global Spatial		101
	4.2.1 Spatial	Covariance	101
	4.2.2 Spatial	Autocorrelation Coefficients for One	
	Variab		102
	4.2.3 Variog	raphy	109
	e		

		Contents	vii
	4.3	Sampling Design Effects on the Estimation of Spatial Pattern	117
	4.4	Spatial Relationship between Two Variables	118
	4.5	Local Spatial Statistics	119
	4.6	Spatial Scan Statistics	122
	4.7		124
		4.7.1 Proximity Polygons	125
		4.7.2 Trend Surface Analysis	125
		4.7.3 Inverse Distance Weighting	126
		4.7.4 Kriging	128
	4.8	Concluding Remarks	134
5	Spat	tial Partitioning: Spatial Clusters and Boundary Detection	136
	Intro	oduction	136
	5.1	Patch Identification	136
		5.1.1 Patch Properties	136
		5.1.2 Spatial Clustering	138
		5.1.3 Fuzzy Classification	140
	5.2	Boundary Delineation	142
		5.2.1 Ecological Boundaries	142
		5.2.2 Boundary Properties	143
		5.2.3 Boundary Detection and Analysis for One-Dimensional	
		Transect Data	145
		5.2.4 Boundary Detection based on Two-Dimensional Data	148
	5.3	5 1	156
	5.4	Hierarchical Spatial Partitioning	158
		5.4.1 Edge Enhancement with Kernel Filters	159
	5.5	Concluding Remarks	161
6	Spat	tial Autocorrelation and Inferential Tests	163
	Intro	oduction	163
	6.1	Models of Autocorrelation in One Dimension	164
	6.2	Dealing with Spatial Autocorrelation in Inferential Models	169
		6.2.1 Simple Adjustments	169
		6.2.2 Adjusting the Effective Sample Size	170
		6.2.3 More on Induced Autocorrelation and the Relationships	
		between Variables	174
		6.2.4 Correlation and Related Measures	176
	6.3	Randomization Procedures	180
		6.3.1 Restricted Randomization and Bootstrap	180
		6.3.2 Monte Carlo Markov Chain	182
	6.4	Considerations for Sampling and Experimental Design	183
		6.4.1 Sampling	184
		6.4.2 Experimental Design	186
	6.5	Concluding Remarks	187

viii	Contents		
-			100
7		sion and Multiscale Analysis	189
	Introduction		189
	-	ausal Inference	189
		on between Spatially Autocorrelated Variables	192
	7.3 Mantel T 7.3.1 P		193
		artial Mantel Tests and Multiple Regression on vistance Matrices	197
		egressions	200
	-	patial Filtering Using Autoregressive Models	200
		ther Spatial Filtering Models	204
		patial Error Regression	203
		eographically Weighted Regression	200
		low to Remove Spatial Autocorrelation from the Residuals	200
		l (Constrained) Ordination	200
		e Analysis	210
		eneralized Moran's Eigenvector Maps	211
		Iultiresolution Spectral Decomposition Analysis	214
		vith Wavelets	218
		ng Remarks	225
8	Spatio-tempora	al Analysis	227
	Introduction		227
	8.1 Spatial S	tatistics Reassessment	229
	8.2 Spatio-te	mporal Join Count	229
	8.3 Spatio-te	mporal Analysis of Clusters and Contagion	230
	8.4 Spatio-te	mporal Scan Statistics	237
		Change Analysis	237
	8.6 Analysis	of Movement	241
	-	mporal Networks	249
		henology	251
	-	spects of Synchrony	253
	8.9 Concludi	ng Remarks	256
9	Spatial Diversi	ty Analysis	258
	Introduction		258
	9.1 Space an	d Diversity	258
	-	patial Scale	259
	9.1.2 S	patial Location and Environmental Gradients	260
		patial Heterogeneity	260
		patial Dependence	261
		on: Why Spatial Diversity	261
		-Diversity	262
		-Diversity	265
		Diversity	270

	Con	itents ix
	9.3 Combinations and Composition: Agreement and Complementa	arity 270
	9.3.1 Species Combinations	271
	9.3.2 Nested Subsets, Constrained Compositional Diversity	275
	9.4 Spatial Diversity: Putting It All Together	278
	9.5 Concluding Remarks	282
	9.5.1 Temporal Aspects	282
	9.5.2 Complexity	282
	9.5.3 Space and Time	283
10	Points and Lines, Graphs and Networks	284
	Introduction	284
	10.1 Lines Alone: Fibre Pattern Analysis	286
	10.1.1 Aggregation and Overdispersion of Fibres	287
	10.1.2 Fibres with Properties	288
	10.1.3 Curving Fibres	291
	10.2 Points and Lines Together	292
	10.3 Points and Lines: Spatial Graphs and Spatial Networks	295
	10.3.1 Spatial Nodes	295
	10.3.2 Neighbour Networks	296
	10.3.3 Signed and Directed Graphs and Networks	299
	10.3.4 Creating Subgraphs	301
	10.4 Network Analysis of Areal Units	301
	10.5 Spatial Analysis of Flow	309
	10.6 Testing Hypotheses with Spatial Graphs	311
	10.7 Concluding Remarks	312
11	Spatial and Temporal Analysis with Multilayer Networks	313
	Introduction	313
	11.1 Multilayer and Multiplex Networks	315
	11.2 Multilayer Metrics for Emergent Properties	316
	11.2.1 Node Degree and Related Measures	316
	11.2.2 Walks and Paths	317
	11.2.3 Centrality and Node Ranking	318
	11.2.4 Clustering	319
	11.2.5 Spectral Properties	321
	11.2.6 Resilience, Robustness and Fragility	322
	11.3 Null Randomization Procedures	322
	11.3.1 Replica Node Randomization	322
	11.3.2 Independent Layer Randomization	323
	11.3.3 Randomization Preserving Multidegree Sequences	323
	11.4 Getting the Most from Multilayer Networks	323
	11.4.1 Behavioural and Disease Ecology	323
	11.4.2 Metawebs	325
	11.4.3 Multispecies Connectivity	327

x	Contents	
	11.5 Multilayer Networks and Spatio-temporal Analysis	329
	11.6 Concluding Remarks	330
12	Closing Comments and Future Directions	331
	12.1 Reminders and Challenges	331
	12.1.1 Reminders	332
	12.1.2 Challenges	334
	12.2 Back to Basics	336
	12.3 Numerical Solutions: Software Programs and Programming	337
	12.4 Statistical and Ecological Tests	338
	12.5 Complementarity of Methods	338
	12.6 Looking Ahead	342
	12.6.1 Ongoing Development	342
	12.6.2 The Bayesian Approach	344
	12.6.3 Spatial Causal Inference	354
	12.6.4 Artificial Intelligence: From Machine Learning to Deep	
	Learning to AI	355
	12.6.5 Geometric Algebra	358
	12.7 Other Future Directions	359
	References	361
	Index	394

Preface

Spatial analysis, and its extension into spatio-temporal analysis, has been a rapidly growing field for at least two decades (consider that our first edition was 20 years ago: Fortin & Dale 2005!). The growth can be attributed to (1) ecologists' increasing awareness of the essential role of spatial and temporal structure for understanding ecological systems, (2) concern about the effects of the all-to-obvious alteration of landscapes around us and (3) increasing sophistication and technical scope of resources to make such analyses possible. The large range of choices for analysis brings its own problems in the form of questions about which methods to use and what the conditions are for their correct application. It is easy to use them incorrectly: (1) by not realizing the difficulties related to different spatial and temporal scales; (2) inadequately accounting for autocorrelation which creates puzzles and uncertainty for parametric analysis; and (3) lack of clarity about spatio-temporal structure's effects on ecological processes and how it can best be incorporated into experiment and analysis. This book is designed to be helpful for all those difficulties by going beyond specific spatial statistics to treat spatio-temporal analysis more generally and by showing which methods are most appropriate for given circumstances and how those chosen are best interpreted.

This purpose makes the book broad in scope, especially with an increased emphasis on spatio-temporal data, including dynamic spatial graphs and spatio-temporal networks. The intent is to help both those who are new to the topic and those that are familiar with some (or even many) aspects of such analysis but are unsure of how to start. Our goal is, therefore, to provide a broad overview of well-established methods, thus easing in through the more familiar, but then moving on to those that are unfamiliar and recent or currently under development. The less familiar includes approaches that have arisen in fields other than ecology, such as geography, geology and epidemiology, and we also look ahead to future developments from more distance disciplines such as applied mathematics and machine learning (Chapter 12).

In order to answer our ecological questions, we begin by detecting patterns in the data, and then investigate further to understand the processes that give rise to the patterns we observe. Pattern recognition is an important part of the endeavour of discovery that includes observation, experimentation, analysis with interpretation and various forms of modelling. In trying to understand ecological processes, we must acknowledge that most of what we study occurs within complex systems, with complexity taking many forms: great biological diversity, different kinds of

xii Preface

hierarchical organization, many levels and layers of multispecies interactions and stochastic components in multi-level dynamics. Consider the complexities of the processes that give rise to the spatial structure and temporal dynamics of 20 species of trees in a temperate forest ... and then those for a tropical forest with hundreds of tree species ... and then for all the insects and fungi in that tropical forest ... Challenges indeed for spatial analysis and spatio-temporal interpretation!

This book stems from years of teaching at our respective universities, as well as research into many of the methods represented here and their application to diverse data by ourselves and colleagues including students and post-doctoral researchers. We acknowledge and thank all those who have helped with our teaching, methodological research and data analysis, but there are really too many to thank in lists of names (thank you all!). The one exception is to thank Cheryl Smyth for her meticulous attention to detail in preparing the text, figures and references. Lastly, we will acknowledge with great appreciation all the sources of funding that supported our research efforts and this project, including NSERC, U of T, UNBC, ...