
Cambridge University Press & Assessment
978-1-009-15812-1 — Actions of Groups
John McCleary 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Warmup: More Group Theory

. . . put operations into groups, class them according to their difficulty
and not according to their form; that is, according to me, the mission of
future geometers . . .

ÉVARISTE GALOIS from Preface for two memoirs

1.1 Isomorphism Theorems

The basic notions of Modern Algebra are modeled on the theory of groups.
Fundamental concepts include subgroups, normal subgroups, quotient groups,
homomorphisms, and isomorphisms. An important result that combines these
ideas is the First Isomorphism Theorem. The ingredients are a homomorphism
φ : G1 → G2 between two groups, and the subgroups

ker φ =
{

g ∈ G1 | φ(g) = e
}

⊂ G1, the kernel of φ, and

φ(G1) =
{

h ∈ G2 | there is g ∈ G1 with h = φ(g)
}

⊂ G2, image of φ.

The First Isomorphism Theorem If φ : G1 → G2 is a homomorphism of

groups, then the kernel of φ is a normal subgroup of G1, and the image of φ,

φ(G1), is isomorphic to the quotient group G1/ ker φ.

Recall that a subgroup N ⊂ G is normal if, for all g ∈ G, gNg−1 = N , or
equivalently, gN = Ng. This theorem has wide-reaching consequences. There
are analogues of the theorem for ring homomorphisms, linear transformations,
and many other structures and their mappings. When we speak of fundamental

concepts, we focus on these key notions.
If there is a first such theorem, then what are the subsequent statements? To

state the next isomorphism theorem, let us consider a particular situation inside
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2 1 Warmup: More Group Theory

a group: Let H and N be subgroups of G with N a normal subgroup. Define

HN = {hn ∈ G | h ∈ H, n ∈ N},

the set of products of an element in H with an element in N , in that order.
Observe that HN is a subgroup of G: if h1n1 and h2n2 are elements of HN ,
then, because N is normal in G, we have h−1

2 Nh2 = N , and so

(h1n1)(h2n2) = (h1h2)
(

h−1
2 n1h2

)

n2 = (h1h2)(n3n2).

Thus HN is closed under multiplication. Also,

(hn)−1 = n−1h−1 = h−1(hn−1h−1) = h−1n′,

and HN contains inverses. These arguments show that HN = NH . With
these constructions, we can prove

The Second Isomorphism Theorem Suppose H and N are subgroups of G

with N a normal subgroup. Then HN is a subgroup of G containing N , and

HN/N ∼= H/(H ∩ N).

Proof First notice that N is a normal subgroup of HN because N is nor-
mal in G. Consider the mapping π : H → HN/N given by π(h) = hN .
Then π(h1h2) = h1h2N = (h1N)(h2N) = π(h1)π(h2), and π is a homo-
morphism. By the First Isomorphism Theorem, π(H) ∼= H/ ker π . Given
hn ∈ HN , the coset hnN = hN , and so the homomorphism π is surjec-
tive. The kernel of π consists of elements of H for which hN = N , that is,
h ∈ H ∩ N . It follows that π(H) = HN/N ∼= H/(H ∩ N).

Corollary 1.1 For G a finite group, #HN = (#H)(#N)/#(H ∩ N).

The subgroups of a group G are partially ordered by inclusion. For small
groups, this ordering can be pictured in the Hasse diagram of G, which is
the graph that depicts this partially ordered set. A vertex is a subgroup, and
an edge denotes an inclusion. For example, the Hasse diagrams for �3, the
group of permutations of {1, 2, 3}, and A4, the group of even permutations of
{1, 2, 3, 4}, take the form as in Fig. 1.1. Here 〈g〉 denotes the cyclic subgroup
generated by g. Subgroups of the same cardinality are arranged horizontally.

Each element of a group G determines a homomorphism by conjugation:
If g ∈ G, then the mapping conjugation by g, cg : G → G, is defined by
cg(h) = ghg−1.

Proposition 1.2 Conjugation by g is an isomorphism called an inner auto-

morphism of G.

www.cambridge.org/9781009158121
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-15812-1 — Actions of Groups
John McCleary 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Isomorphism Theorems 3

Figure 1.1

Proof We have cg(hk) = g(hk)g−1 = (ghg−1)(gkg−1) = cg(h)cg(k),
and cg is a homomorphism. If g−1 is the inverse of g, then cg−1 satisfies
cg−1(cg(h)) = g−1(ghg−1)g = h, and cg is an isomorphism.

Two elements h, k of G are said to be conjugates if there is an element
g ∈ G such that cg(h) = k, that is, k = ghg−1. This relation is an equivalence
relation on G: exe−1 = x, so x is a conjugate of x; if x is a conjugate of y,
that is, y = cg(x), then x = cg−1(y), and y is a conjugate of x; finally, if x is
conjugate to y and y is conjugate to z, then y = cg(x) and z = ch(y) for some
g, h ∈ G. It follows that z = ch(cg(x)) = h(gxg−1)h−1 = (hg)x(hg)−1 =

chg(x) and x is conjugate to z.

Definition 1.3 The equivalence classes under conjugation of elements of G

are called conjugacy classes . We denote a conjugacy class by [g] = {xgx−1 |

x ∈ G}, and the set of equivalence classes is denoted by Cl(G).

The set Cl(G) tells us something about the binary operation on G. For ex-
ample, if G is abelian, then ghg−1 = gg−1h = h, and so the conjugacy class
of h is a singleton set {h}. When G is nonabelian, the set Z(G) of elements
whose conjugacy classes are singletons, that is, [g] = {g}, determines a sub-
group of G called the center of G: Suppose x, y ∈ Z(G). Then cg(x) = x

and cg(y) = y for all g ∈ G; cg(xy) = cg(x)cg(y) = xy for all g ∈ G, and so
xy ∈ Z(G); if x ∈ Z(G), then cg(x

−1) = gx−1g−1 = (g−1xg)−1 = x−1 for
all g ∈ G.

Let us explore the important example of conjugacy classes in �n, the sym-

metric group on n letters , which is the group of all permutations of the set
[n] = {1, 2, . . . , n}. Recall that a permutation is a one-to-one correspondence
of [n] with itself. There are various notations for permutations. For example,
if σ ∈ �7, then we can write

σ =

(

1 2 3 4 5 6 7
2 3 4 1 5 7 6

)

= (1, 2, 3, 4)(6, 7).
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4 1 Warmup: More Group Theory

In the first case, we present the function values explicitly; reading downward
σ(1) = 2, σ(2) = 3, etc. In the second case, we use cycle notation: (1, 2, 3, 4)

means 1 
→ 2 
→ 3 
→ 4 
→ 1. Notice that 5 does not appear in the cycle
notation because it is fixed by σ , σ(5) = 5. Every permutation has a unique
presentation as a composite of disjoint cycles. Simply apply σ repeatedly to
an element until it cycles back to itself. This gives one cycle. Apply σ to
any remaining elements, leaving off any that are fixed, and repeat until every
element fits into a cycle or is fixed. We denote the identity permutation Id(j) =

j for all j by ( ), the empty cycle. A given cycle has as many presentations
as elements in its cycle; for example, (1, 2, 3) = (2, 3, 1) = (3, 1, 2). The
pattern of the bijection is fixed by the cyclic order of the elements.

The binary operation on �n is a composition, and so when we compute the
product of permutations, we compute the resulting cycle decomposition of the
product reading from right to left. For example,

(3, 4, 5) ◦ (1, 3, 5, 2, 4) = (1, 4)(2, 5).

We call a 2-cycle (a, b) a transposition because only two elements move
and they are interchanged. Every permutation can be expressed as a product
of transpositions. For example, (a, b, c) = (a, b)(b, c). We say that a per-
mutation is an odd permutation (even permutation) if it has a presentation
as a product of an odd (even) number of transpositions. It is left as an exer-
cise to prove that this is independent of the choice of presentation. Products of
even permutations are even, and so they form a subgroup An of �n, called the
alternating group on n letters.

In 1844 [11], AUGUSTIN CAUCHY (1789–1857) first developed some of the
key properties of symmetric groups. In particular, he proved the following:

Cauchy’s Formula If σ ∈ �n and (a1, a2, . . . , ak) is a k-cycle in �n, then

σ ◦ (a1, a2, . . . , ak) ◦ σ−1 =
(

σ(a1), σ (a2), . . . , σ (ak)
)

.

Proof If (a1, . . . , ak) fixes i ∈ [n], then σ ◦ (a1, . . . , ak) ◦ σ−1 fixes σ(i):

σ ◦ (a1, . . . , ak) ◦ σ−1(σ(i)
)

= σ ◦ (a1, . . . , ak)(i) = σ(i).

For 1 ≤ j ≤ k, we have

σ ◦ (a1, . . . , ak) ◦ σ−1(σ(aj )
)

= σ ◦ (a1, . . . , ak)(aj ) = σ(aj+1),

where we understand ak+1 = a1. Because we have accounted for everything
in [n], the permutation σ ◦ (a1, . . . , ak) ◦ σ−1 = (σ (a1), . . . , σ (ak)).
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1.1 Isomorphism Theorems 5

Since conjugation is a homomorphism,

cσ

(

(a1, . . . , ak)(b1, . . . , bl)
)

= cσ

(

(a1, . . . , ak)
)

◦ cσ

(

(b1, . . . , bl)
)

=
(

σ(a1), . . . , σ (ak)
)(

σ(b1), . . . , σ (bl)
)

.

Cauchy’s Formula extends to arbitrary products of cycles.
When a permutation σ ∈ �n is written as a product of disjoint cycles in-

volving m1 elements fixed by σ , m2 2-cycles, m3 3-cycles, and so on, we write
the type of σ as (1m1 , 2m2 , 3m3, . . . , nmn). Here m1 + 2m2 + · · · + nmn = n.
For example, σ = (1, 2, 3, 4)(6, 7) ∈ �7 has type (11, 21, 30, 41, 50, 60, 70).

Corollary 1.4 Two permutations in �n are conjugate if and only if they share

the same type.

Proof By Cauchy’s Formula conjugation preserves the length of a cycle. If
σ and τ are conjugate, then they have the same type. Suppose conversely that
σ and τ have the same type. We use the functional presentation of a permu-
tation. Suppose the type shared by σ and τ is (1m1 , 2m2, . . . , nmn). Write the
domain [n] as an ordered set 1 < 2 < · · · < n and place parentheses ac-
cording to the type giving a permutation α ∈ �n. For example, in �7, a type
(11, 21, 30, 41, 50, 60, 70) gives us α = (1)(2, 3)(4, 5, 6, 7). Write σ and τ as
products of disjoint cycles that follow the type in the manner of α. For exam-
ple, σ = (1, 2, 3, 4)(6, 7) can be written as (5)(6, 7)(1, 2, 3, 4). This gives us
an ordering of [7] by ignoring the parentheses. We obtain a permutation θ by
stacking the natural order over the order given by σ :

θ =

(

1 2 3 4 5 6 7
5 6 7 1 2 3 4

)

.

Cauchy’s Formula tells us that θ ◦α◦θ−1 = θ ◦(1)(2, 3)(4, 5, 6, 7)◦θ−1 = σ .
Reversing the conjugation by θ , we get α = θσθ−1. For τ of the same type,
we get another permutation ζ with α = ζ τζ−1, and so θσθ−1 = ζ τζ−1; it
follows that σ and τ are conjugate.

The restriction that the type satisfies m1 +2m2+· · ·+nmn = n with mi ≥ 0
corresponds to a partition of the integer n, that is, an expression of n as a sum
of positive integers in nondecreasing order. For example, 4 = 1 + 1 + 1 + 1 =

1 + 1 + 2 = 1 + 3 = 2 + 2. Each partition of 4 corresponds to a type: 4 ↔

(10, 20, 30, 41), 1 + 1 + 1 + 1 ↔ (14, 20, 30, 40), 1 + 1 + 2 ↔ (12, 21, 30, 40),
1 + 3 ↔ (11, 20, 31, 40), and 2 + 2 ↔ (10, 22, 30, 40). The analysis above
shows that the number of conjugacy classes filling �n is p(n), the number of

partitions of n. The function p(n) was introduced by Leibniz and is the subject
of some remarkable mathematics (see, for example, [1]).
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6 1 Warmup: More Group Theory

Get to know conjugation

1. For a group G, an element g ∈ G, and a subgroup H of G, show that
gHg−1 is a subgroup of G that is isomorphic to H .

2. What are the conjugacy classes of the groups �3 and �4? What is the
cardinality of each conjugacy class?

3. Show that a group G is abelian if and only if all of its conjugacy classes
are singletons.

4. What is the partition into conjugacy classes for the group A4 ⊂ �4

of even permutations of four objects? What is the partition into con-
jugacy classes for the dihedral group of eight elements, D8, the set of
symmetries of a square?

The dihedral groups D2n are the groups of symmetries of a regular
n-gon in the plane. There is a symmetry by rotating the n-gon through
2π/n radians. Denote this rotation by r and notice that rn = Id. If
we situate the n-gon in the plane with its center of gravity at the origin
and one vertex at the point (1, 0), then there is a symmetry of the plane
obtained by (x, y) going to (x,−y) (complex conjugation?). Denote
this reflection by f and notice that f 2 = Id. These two elements
generate the dihedral group, that is, every symmetry of the regular n-
gon in the plane is a finite product of the form f a1rb1f a2rb2 · · · . We
simplify using f 2 = Id = rn whenever they occur. There is also
another relation that follows from the geometry: f r = rn−1f . (Can
you picture this?) We write these data as a presentation of the group:

D2n =
〈

f, r | rn = Id, f 2 = Id, f r = rn−1f
〉

.

The dihedral group D2n has order 2n.
If G is a group and S ⊂ G is a subset of G, then 〈S〉 is the smallest

subgroup of G that contains S, that is, 〈S〉 =
⋂

S⊂H,subgroup H .
5. Suppose that N is a normal subgroup of G. Show that N is the union

of the conjugacy classes of its elements. If [g] is a conjugacy class of
G and H = 〈[g]〉 is the subgroup of G generated by the elements of
[g], then show that H is normal in G.

For a subgroup of a group, the conjugacy classes of elements in the subgroup
need not coincide with those of the group. For example, if H = 〈g〉 is a cyclic
subgroup generated by g ∈ G, then the conjugacy classes in H are singletons.
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1.1 Isomorphism Theorems 7

If G is nonabelian, then there are conjugacy classes of cardinality greater than
one.

In a finite group, what is the cardinality of a conjugacy class? The cen-

tralizer of an element g in any group G is the subset CG(g) = {x ∈ G |

xgx−1 = g}. In other words, the centralizer consists of those elements x of G

that commute with g.

Proposition 1.5 For g ∈ G a group, the centralizer CG(g) is a subgroup

of G. Furthermore, if G is finite, then #[g], the cardinality of the conjugacy

class of g, is given by the index of CG(g) in G, [G : CG(g)] = #G/#CG(g).

Proof If x, y ∈ CG(g), then (xy)g(xy)−1 = x(ygy−1)x−1 = xgx−1 = g.
So CG(g) is closed under the binary operation. Because g = xgx−1 implies
x−1gx = g, CG(g) is closed under inverses, and CG(g) is a subgroup of G.
Recall that G/CG(g) denotes the set of left cosets of CG(g) in G.

Consider the function of sets f : G/CG(g) → [g] given by f : xCG(g) 
→

xgx−1. If xCG(g) = yCG(g), then y−1x ∈ CG(g) from which it follows that
(y−1x)g(y−1x)−1 = g. This implies that xgx−1 = ygy−1 and the mapping
f is well-defined. It is clearly surjective. To see that f is injective, suppose
f (x) = f (y). Then xgx−1 = ygy−1 and (y−1x)g(y−1x)−1 = g, that is,
y−1x ∈ CG(g), and so xCG(g) = yCG(g). The bijection implies that #[g] =

#(G/CG(g)) = [G : CG(g)].

For a subgroup H of G and h ∈ H , we have CH (h) = {k ∈ H | khk−1 =

h} = CG(h) ∩ H .
Let us examine in detail the case of An, the subgroup of �n consisting of

even permutations. Suppose σ ∈ An. In �n the conjugates of σ are permuta-
tions of the same type as σ . If τ is an odd permutation, then τστ−1 is an even
permutation that might not be in the conjugacy class of σ in An. It can be that
τστ−1 �= ασα−1 for all α ∈ An. How can we recognize when this happens?
Following Proposition 1.5,

#[σ ]An =
[

An : CAn(σ )
]

=
[

An : An ∩ C�n(σ )
]

.

Because An is normal in �n, the Second Isomorphism Theorem implies
C�n(σ )An/An

∼= C�n(σ )/An∩C�n(σ ). Cross multiply to obtain #An/#(An∩

C�n(σ )) = #C�n(σ )An/#An, and

[

An : An ∩ C�n(σ )
]

=
[

C�n(σ )An : C�n(σ )
]

.

Suppose there is an odd permutation that commutes with σ . Then C�n(σ )

contains an odd permutation, and so C�n(σ )An = �n. From this identity,
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8 1 Warmup: More Group Theory

#[σ ]An =
[

An : An ∩ C�n(σ )
]

=
[

C�n(σ )An : C�n(σ )
]

=
[

�n : C�n(σ )
]

= #[σ ]�n .

When there are no odd permutations that commute with σ , we have
C�n(σ ) = CAn(σ ), and #[σ ]An = [An : C�n(σ )], but then

#[σ ]�n =
[

�n : C�n(σ )
]

= [�n : An]
[

An : C�n(σ )
]

= 2#[σ ]An .

So if σ commutes only with even permutations, then the conjugacy class of σ

in �n splits into two equal pieces in An.
For example, in �3, [(1, 2, 3)]�3 = {(1, 2, 3), (1, 3, 2)}, whereas [(1, 2,

3)]A3 = {(1, 2, 3)}. It would nice to be able to tell directly from σ when
C�n(σ ) = CAn(σ ).

Proposition 1.6 Suppose σ ∈ An has type (1m1, 2m2, . . . , nmn). Then

C�n(σ ) = CAn(σ ) and #[σ ]�n = 2#[σ ]An if and only if, for all i, m2i = 0
and m2i+1 = 0 or 1.

For example, in �3, the type of (1, 2, 3) is (10, 20, 31).

Proof If m2i > 0, then σ = αβ with α a 2i-cycle and β a product of cycles
disjoint from α. This implies αβ = βα, and multiplying by α on the left gives

ασ = ααβ = αβα = σα.

A 2i-cycle is an odd permutation and α is in C�n(σ ) but not in An.
If m2i = 0 but m2i+1 > 1 for some i, then, after renumbering, we have

σ = (1, 2, . . . , 2i + 1)(1′, 2′, . . . , (2i + 1)′)ν, where the numbers 1 through
2i + 1 and 1′ through (2i + 1)′ are taken from [n] and are disjoint from one
another. The permutation ν is also disjoint from these numbers. Let ζ =

(1, 1′)(2, 2′) · · · (2i + 1, (2i + 1)′), an odd permutation. Then ζσζ−1 = σ

by Cauchy’s Formula, and so ζ ∈ C�n(σ ). This proves one direction of the
proposition.

To prove the other direction, suppose the type of σ has m2i = 0 and m2i+1 =

0 or 1 for all i. Then σ is a product of disjoint k-cycles with k odd. Since
the type determines the conjugacy class in �n, we can count the number of
elements in [σ ]�n combinatorially. Take any of the n! orderings of [n] and
form the permutation θ as in the proof of Proposition 1.5 by removing the first
m1 entries and introducing parentheses according to the type of σ . Wherever
m2i+1 = 1, the corresponding (2i + 1)-cycle can start from any of its entries
and so is counted 2i + 1 times. We divide n! by 2i + 1 for each m2i+1 = 1
to adjust for the overcounting. Thus #[σ ] = n!/t with t an odd number. This
implies #C�n(σ ) = t , a subgroup of �n of odd order, and every permutation
in C�n(σ ) has odd order. The order of a permutation is the least common
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1.2 The Jordan–Hölder Theorem 9

multiple of the lengths of each constituent disjoint k-cycle. Since the order is
odd, no 2m-cycle appears in the disjoint cycle presentation of any element of
C�n(σ ). Then C�n(σ ) ⊂ An and C�n(σ ) = CAn(σ ).

For example, in A5 the permutation σ = (1, 2, 3, 4, 5) has type (10, 20, 30,

40, 51), and so C�n(σ ) = CAn(σ ) and #[σ ]�n = 2#[σ ]An . On the other
hand, the permutation τ = (1, 2, 3) has type (12, 20, 31, 40, 50), and so the
conjugacy class of τ satisfies [(1, 2, 3)]�5 = [(1, 2, 3)]A5 and contains all 3-
cycles.

1.2 The Jordan–Hölder Theorem

When φ : G1 → G2 is a homomorphism, we obtain subgroups of G1 by taking
the inverse image of subgroups of G2: let K ⊂ G2 denote a subgroup of G2,
and let

φ−1(K) =
{

g ∈ G1 | φ(g) ∈ K
}

.

If g and g′ are in φ−1(K), then φ(g) = k and φ(g′) = k′, both in K . Since K

is a subgroup, φ(gg′) = φ(g)φ(g′) = kk′ is in K , and so gg′ ∈ φ−1(K). For
a subgroup H ⊂ G1, the image φ(H) = {φ(h) ∈ G2 | h ∈ H } is a subgroup
of G2. Hence we can go to and fro between the collections of subgroups in
this manner. In fact, we get a strong connection between these collections.

The Correspondence Theorem Let φ : G1 → G2 be a surjective group

homomorphism. Then there is a bijection

� : Sφ = {H, a subgroup of G1, with ker φ ⊂ H }

→ TG2 = {K, a subgroup of G2}

given by �(H) = φ(H). Furthermore, � and its inverse take normal sub-

groups to normal subgroups.

Proof We prove � is a bijection by presenting its inverse. For a subgroup K

of G2, let �−1(K) = φ−1(K). In general, notice that φ−1(φ(H)) = (ker φ)H

as subgroups of G1: let l ∈ φ−1(φ(H)). Then φ(l) ∈ φ(H), and we can write
φ(l) = φ(h) for some h ∈ H . Then φ(lh−1) = e and lh−1 = k ∈ ker φ, but
then l = kh ∈ (ker φ)H and φ−1(φ(H)) ⊂ (ker φ)H . For nh ∈ (ker φ)H ,
φ(nh) = φ(n)φ(h) = φ(h) ∈ φ(H), and so (ker φ)H ⊂ φ−1(φ(H)).

For any subgroup H ∈ Sφ , we have ker φ ⊂ H , and so H = (ker φ)H =

φ−1(φ(H)) = �−1(�(H)). In the other direction, �(�−1(K)) =
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10 1 Warmup: More Group Theory

φ(φ−1(K)). Because φ is a surjection, φ(φ−1(K)) = K , and so � ◦ �−1

is the identity mapping on TG2 .
If N is a normal subgroup, N ⊳ G1, and k ∈ G2, then we can write

k�(N)k−1 = φ(g)φ(N)φ(g−1) because φ is surjective. It follows then that
φ(g)φ(N)φ(g−1) = φ(gNg−1) = φ(N), and so �(N) is normal in G2. For a
normal subgroup M of G2, and h ∈ G1, φ(hφ−1(M)h−1) = φ(h)Mφ(h−1) =

M , and hφ−1(M)h−1 = φ−1(M), that is, �−1(M) is normal in G1.

The Correspondence Theorem implies that a surjective homomorphism
gives a correspondence between the Hasse diagram of the codomain and por-
tions of the Hasse diagram of the domain. Correspondences will figure promi-
nently in other parts of the book.

One way to carry out inductive sorts of arguments on finite groups is choos-
ing a normal subgroup N of a finite group G that gives a surjection π : G →

G/N to a smaller group G/N . Properties of G/N may lift to G over π as in
the Correspondence Theorem. However, some groups are not susceptible to
this strategy, lacking nontrivial normal subgroups.

Definition 1.7 A group G is called a simple group if whenever N is a normal
subgroup of G, then N = {e} or N = G.

For example, an abelian finite group G is simple if and only if G is isomor-
phic to Z/pZ for a prime p. (Can you prove this?) Simple groups turn out
to play a role similar to atoms in a molecule or to primes in the prime factor-
ization of a positive integer. To make this analogy precise, we introduce the
following notion.

Definition 1.8 Suppose G is a finite group. A proper subgroup N is a maximal

normal subgroup if N is normal in G, and if N ⊳ H ⊳ G for some subgroup
H , then either H = N or H = G.

Proposition 1.9 For a group G and a normal subgroup N , the quotient group

G/N is a simple group if and only if N is a maximal normal subgroup.

Proof Let π : G → G/N be the quotient homomorphism, π(g) = gN . Sup-
pose H is a normal subgroup of G/N . Then π−1(H) is a normal subgroup
of G that contains N = ker π . If N is a maximal normal subgroup, then
N ⊳ π−1(H)⊳ G implies either that π−1(H) = N , and so H = {eN} ⊂ G/N ,
or that π−1(H) = G and H = G/N . Hence G/N is a simple group.

In the case that G/N is a simple group, any normal subgroup M of G with
N ⊳ M ⊳ G is mapped to π(M) a normal subgroup of G/N . This implies that
π(M) = {eN} or π(M) = G/N , which implies that M = N or M = G and
N is a maximal normal subgroup of G.
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