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Figure 9.23: The original (uncompressed) photograph is “Katherine Johnson At Her Desk at NASA Lan-

gley Research Center” by NASA photographer Bob Nye (NASA ID: LRC-1966-B701_P-06717). It is

in the public domain.

Figure 9.33: The image is based on a c. 1946 U.S. Army photograph that is in the public domain; it shows

two of the earliest-ever computer programmers, Betty Jean Jennings (later known as Jean Bartik) and

Frances Bilas (later Frances Spence), running the ENIAC.

Figure 9.35: The image of the Enigma machine is a section of a public-domain photograph from the CIA

Museum.
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Museum.
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and it is printed with permission from the Nelson Mandela Foundation and from Reader’s Digest.
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Tom Lehrer, and the Tom Lehrer Trust 2000 (tomlehrersongs.com).

The lines from Emily Dickinson (p. 509) appear with permission from Harvard University Press. They
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Press of Harvard University Press, Copyright © 1951, 1955 by the President and Fellows of Harvard
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appear with permission from John Gorka (www.johngorka.com).

The lyrics from Kris Delmhorst’s “North Dakota” (p. 605) are excerpted with permission from Kris
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The remaining quotations that appear at the beginning of each section of the book are in the public domain.

1 On the Point of this Book

In which our heroes decide, possibly encouraged by a requirement

for graduation, to set out to explore the world.
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2 On the Point of this Book

Why You Might Care

Read much, but not many Books.

Benjamin Franklin (1706–1790)
Poor Richard’s Almanack (1738)

This book is designed for an undergraduate student who has taken a computer science class or three.

Most likely, you are a sophomore or junior prospective or current computer science major taking your first

non-programming-based CS class. If you are a student in this position, you may be wondering why you’re

taking this class (or why you have to take this class!). Computer science students taking a class like this

one sometimes don’t see why this material has anything to do with computer science—particularly if you

enjoy CS because you enjoy programming.

I want to be clear: programming is awesome! I get lost in code all the time—it would be better not count

the number of hours that I spent writing the LATEX code to draw the Fibonacci word fractal in Figure 5.27,

or the divisibility relation in Figure 8.26, for example. (LATEX, the tool used to typeset this book, is the

standard typesetting package for computer scientists, and it’s actually also a full-fledged, if somewhat

bizarre, programming language.)

But there’s more to CS than programming. In fact, many seemingly unrelated problems rely on the same

sorts of abstract thinking. It’s not at all obvious that an optimizing compiler (a program that translates source

code in a programming language like C into something directly executable by a computer) would have

anything important in common with a program to play chess perfectly. But, in fact, they’re both tasks that

are best understood using logic (Chapter 3) as a central component of any solution. Similarly, filtering spam

out of your inbox (“given a message m, should m be categorized as spam?”) and doing speech recognition

(“given an audio stream s of a person speaking in English, what is the best ‘transcript’ reflecting the words

spoken in s?”) are both best understood using probability (Chapter 10).

And these, of course, are just examples; there are many, many ways in which we can gain insight and

efficiency by thinking more abstractly about the commonalities of interesting and important CS problems.

That is the goal of this book: to introduce the kind of mathematical, formal thinking that will allow you to

understand ideas that are shared among disparate applications of computer science—and to make it easier

for you to make your own connections, and to extend CS in even more new directions.

How To Use This Book

“Tom’s getting very profound,” said Daisy, with an expression of unthoughtful sadness.
“He reads deep books with long words in them.”

F. Scott Fitzgerald (1896–1940)
The Great Gatsby (1925)

The brief version of the advice for how to use this book is: it’s your book; use it however you’d like. (Will

Shortz, the crossword editor of The New York Times, gives the analogous advice about crossword puzzles

when he’s asked whether Googling for an answer is cheating.) But my experience is that students do best

when they read actively, with scrap paper close by; most people end up with a deeper understanding of a

problem by trying to solve it themselves first, before they look at the solution.

I’ve assumed throughout that you’re comfortable with programming in at least one language, including

familiarity with recursion. It doesn’t much matter which particular programming language you know; we’ll
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use features that are shared by almost all modern languages—things like conditionals, loops, functions, and

recursion. You may or may not have already taken more than one programming-based CS course; many,

but not all, institutions require data structures as a prerequisite for this material. There are times in the book

when a data structures background may give you a deeper understanding (but the same is true in reverse if

you study data structures after this material). There are similarly a handful of topics for which a rudimen-

tary calculus background is valuable. But knowing/remembering calculus will be specifically useful only

a handful of times in this book; the mathematical prerequisite for this material is really algebra and “math-

ematical maturity,” which basically means having some degree of comfort with the idea of a mathematical

definition and with the manipulation of a mathematical expression. (The few places where calculus is help-

ful are explicitly marked, and there’s no point at which following a calculus-based discussion is necessary

to understand the subsequent material.)
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There are 10 technical chapters after this one

in the book, followed by a brief concluding chap-

ter (Chapter 12). Their dependencies are as shown

at right. Aside from these dependencies, there are

occasional references to other chapters, but these

references are light, and intended to be enrich-

ing rather than essential. If you’ve skipped Chap-

ter 6—many instructors will choose not cover this

material, as it is frequently included in a course on

algorithms instead of this one—then it will still be

useful to have an informal sense of O, , and

notation in the context of the worst-case running

time of an algorithm. (You might skim Section 6.1

and Section 6.6 before reading Chapters 7–11.)

When I teach the corresponding course at my

institution, I typically include material from all

chapters except Chapter 8 and Chapter 11, omit-

ting various other sections and subsections as

necessary to fit into the time constraints. (Our aca-

demic calendar is a bit compressed: we have three

10-week terms per year, with students taking three

classes per term, and the courses end up being rather fast paced.) I also typically slightly reorder the later

chapters, moving number theory (Chapter 7) to be the last topic of the course.

I’ve tried to include some helpful tips for problem solving throughout the book, along with a few warn-

ings about common confusions and some notes on terminology and notation that may be helpful in keeping

the words and symbols straight. There are also two kinds of extensions to the main material. The “Taking

it Further” blocks give more technical details about the material under discussion—an alternate way of

thinking about a definition, or a more technical derivation or extension that’s relevant but not central, or a

way that a concept is used in CS or a related field. You should read the “Taking it Further” blocks if—but

only if!—you find them engaging. Each section also ends with one or more boxed-off “Computer Science

Connections” that show how the core material in that section can be used in a wide variety of (interesting,

I hope!) CS applications. No matter how interesting the core technical material may be, I think that it is

what we can do with it that makes it worth studying.
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4 On the Point of this Book

What This Book Is About

I have no wish to talk nonsense.

Charlotte Brontë (1816–1855)
Jane Eyre (1847)

This book focuses on discrete mathematics, in which the entities of interest are distinct and separate.

Discrete mathematics contrasts with continuous mathematics, as in calculus, which addresses infinites-

imally small objects, which cannot be separated. We’ll use summations rather than integrals, and we’ll

generally be thinking about things more like the integers (“1, 2, 3, . . .”) than like the real numbers (“all

numbers between π and 42”).

Be careful; there are two different words that are pronounced identically: discrete, adj., individually separate and distinct; and

discreet, adj., careful and judicious in speech, especially to maintain privacy or avoid embarrassment. You wouldn’t read a book

about discreet mathematics; instead, someone who trusts you might quietly share it while making sure no one was eavesdropping.

Because this book is mostly focused on non-programming-based parts of computer science, in general

the “output” that you produce when solving a problem will be something different from a program. Most

typically, you will be asked to answer some question (quantitatively or qualitatively) and to justify that

answer—that is, to prove your answer. (A proof is an ironclad, airtight argument that convinces its reader

of your claim.) Remember that your task in solving a problem is to persuade your reader that your pur-

ported solution genuinely solves the problem. Above all, that means that your main task in writing is

communication and persuasion.

There are three very reasonable ways of thinking about this book.

• View #1 is that this book is about the mathematical foundations of computation. This book is designed

to give you a firm foundation in mathematical concepts that are crucial to computer science: sets and

sequences and functions, logic, proofs, probability, number theory, graphs, and so forth.

• View #2 is that this book is about practice. Essentially no particular example that we consider matters;

what’s crucial is for you to get exposure to and experience with formal reasoning. Learning specific facts

about specific topics is less important than developing your ability to reason rigorously about formally

defined structures.

• View#3 is that this book is about applications of computer science: error-correcting codes (how to rep-

resent data redundantly so that the original information is recoverable even in the face of data corruption),

cryptography (how to communicate securely so that your information is understood by its intended recip-

ient but not by anyone else), natural language processing (how to interpret the “meaning” of an English

sentence spoken by a human using an automated dialogue system), and so forth. But, because solutions

to these problems rely fundamentally on sets and counting and number theory and logic, we have to

understand basic abstract structures in order to understand the solutions to these applied problems.

In the end, of course, all three views are right: I hope that this book will help to introduce some of the

foundational technical concepts and techniques of theoretical computer science, and I hope that it will also

help demonstrate that these theoretical approaches have relevance and value in work throughout computer

science—in topics both theoretical and applied. And I hope that it will be at least a little bit of fun.

Bon voyage!

2 Basic Data Types

In which our heroes equip themselves for the journey ahead, by

taking on the basic provisions that they will need along the road.
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6 Basic Data Types

2.1 Why You Might Care

It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle (1859–1930)
A Scandal in Bohemia (1892)

Imagine converting a color photograph to grayscale (as in Figure 2.1). Implementing this conversion

requires interacting with a slew of foundational data types (the basic “kinds of things”) that show up

throughout CS. A pixel is a sequence of three color values, red, green, and blue. (And an image is a

two-dimensional sequence of pixels.) Those color values are integers between 0 and 255 (because each

is represented as a sequence of 8 bits). The translation process is a function taking inputs (any of the set of

possible color values) and producing outputs (any of the set of grayscale values) using a particular formula.

Virtually every interesting computer science application uses these basic data types extensively. Cryp-

tography, which is devoted to the secure storage and transmission of information so that a malicious third

party cannot decipher that information, is typically based directly on integers, particularly large prime

numbers. A ubiquitous task in machine learning is to “cluster” a set of entities into a collection of nonover-

lapping subsets so that two entities in the same subset are similar and two entities in different subsets are

dissimilar. In information retrieval, where we might seek to find the document from a large collection that

is most relevant to a given query, it is common to represent each document by a vector (a sequence of

numbers) based on the words used in the document, and to find the most relevant documents by identifying

which ones “point in the same direction” as the query’s vector. And functions are everywhere in CS, from

data structures like hash tables to the routing that’s done for every packet of information on the internet.

This chapter introduces concepts, terminology, and notation related to the most common data types that

recur throughout this book, and throughout computer science. These basic entities—the Booleans (True

and False), numbers (integers, rationals, and reals), sets, sequences, functions—are also the basic data

types we use in modern programming languages. Some specific closely related topics will appear later in

the book, as well. But, really, every chapter of this book is related to this chapter: our whole enterprise

will involve building complex objects out of these simple ones (and, to be ready to understand the more

complex objects, we have to understand the simple pieces first). And before we launch into the sea of

applications, we need to establish some basic shared language. Much of the basic material in this chapter

may be familiar, but regardless of whether you have seen it before, it is important and standard content

with which it is important to be comfortable.
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This grayscale
image was
produced from the
original color
using a rough-cut
formula
0.2126 · red+

0.7152 · green+

0.0722 · blue,

rounded down to
the nearest integer
(in other words,
using the floor
function).

Figure 2.1 Converting an image to grayscale. The second image’s highlighted pixels—variously corresponding to

brown fur, gray claws, and green plants—are all the same shade of gray. (That is, using the terminology of Section 2.5,

the function is not one-to-one, a fact that has implications for designing interfaces when some users are colorblind.)

2.2 Booleans, Numbers, and Arithmetic 7

2.2 Booleans, Numbers, and Arithmetic

“And you do Addition?” the White Queen asked. “What’s one and one and one and one
and one and one and one and one and one and one?”

“I don’t know,” said Alice. “I lost count.”

“She can’t do Addition,” the Red Queen interrupted.

Lewis Carroll (1832–1898)
Through the Looking-Glass (1871)

We start by introducing the most basic types of data: Boolean values (True and False), integers

( 2 1 0 1 2 ), rational numbers (fractions with integers as numerators and denominators), and

real numbers (including the integers and all the numbers in between them). The rest of this section will then

introduce some basic numerical operations: absolute values and rounding, exponentiation and logarithms,

summations and products. Figure 2.2 summarizes this section’s notation and definitions.

2.2.1 Booleans: True and False

The most basic unit of data is the bit: a single piece of information, which either takes on the value 0 or the

value 1. Every piece of stored data in a digital computer is stored as a sequence of bits. (See Section 2.4

for a formal definition of sequences.)

We’ll view bits from several different perspectives: 1 and 0, on and off, yes and no, True and False. Bits

viewed under the last of these perspectives have a special name, the Booleans:

Definition 2.1: Booleans.

A Boolean value is either True or False.

(Booleans are named after George Boole (1815–1864), a British mathematician, who was the first person

to think about True as 1 and False as 0.) The Booleans are the central object of study of Chapter 3, on

logic. In fact, they are in a sense the central object of study of this entire book: simply, we are interested in

making true statements, with a proof to justify why the statement is true.

2.2.2 Numbers: Integers, Reals, and Rationals

We’ll often encounter a few common types of numbers—integers, reals, and rationals:

Definition 2.2: Integers, reals, and rationals.

The integers, denoted by , are those numbers with no fractional part: 0, the positive integers (1 2 ),

and the negative integers ( 1 2 3 ).

The real numbers, denoted by , are those numbers that can be (approximately) represented by

decimal numbers; informally, the reals include all integers and all numbers “between” any two integers.

The rational numbers, denoted by , are those real numbers that can be represented as a ratio n
m
of two

integers n and m, where n is called the numerator and m 0 is called the denominator. A real number

that is not rational is called an irrational number.

The superficially unintuitive notation for the integers, the symbol , is a stylized “Z” that was chosen because of the German

word Zahlen, which means “numbers.” The name rationals comes from the word ratio; the symbol comes from its synonym

quotient. (Besides, the symbol was already taken by the reals, so the rationals got stuck with their second choice.)
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possible color values) and producing outputs (any of the set of grayscale values) using a particular formula.

Virtually every interesting computer science application uses these basic data types extensively. Cryp-

tography, which is devoted to the secure storage and transmission of information so that a malicious third

party cannot decipher that information, is typically based directly on integers, particularly large prime

numbers. A ubiquitous task in machine learning is to “cluster” a set of entities into a collection of nonover-

lapping subsets so that two entities in the same subset are similar and two entities in different subsets are

dissimilar. In information retrieval, where we might seek to find the document from a large collection that

is most relevant to a given query, it is common to represent each document by a vector (a sequence of

numbers) based on the words used in the document, and to find the most relevant documents by identifying

which ones “point in the same direction” as the query’s vector. And functions are everywhere in CS, from

data structures like hash tables to the routing that’s done for every packet of information on the internet.

This chapter introduces concepts, terminology, and notation related to the most common data types that

recur throughout this book, and throughout computer science. These basic entities—the Booleans (True

and False), numbers (integers, rationals, and reals), sets, sequences, functions—are also the basic data

types we use in modern programming languages. Some specific closely related topics will appear later in

the book, as well. But, really, every chapter of this book is related to this chapter: our whole enterprise

will involve building complex objects out of these simple ones (and, to be ready to understand the more

complex objects, we have to understand the simple pieces first). And before we launch into the sea of

applications, we need to establish some basic shared language. Much of the basic material in this chapter

may be familiar, but regardless of whether you have seen it before, it is important and standard content

with which it is important to be comfortable.
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This grayscale
image was
produced from the
original color
using a rough-cut
formula
0 2126 red

0 7152 green

0 0722 blue

rounded down to
the nearest integer
(in other words,
using the floor
function).

Figure 2.1 Converting an image to grayscale. The second image’s highlighted pixels—variously corresponding to

brown fur, gray claws, and green plants—are all the same shade of gray. (That is, using the terminology of Section 2.5,

the function is not one-to-one, a fact that has implications for designing interfaces when some users are colorblind.)
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2.2 Booleans, Numbers, and Arithmetic

“And you do Addition?” the White Queen asked. “What’s one and one and one and one
and one and one and one and one and one and one?”

“I don’t know,” said Alice. “I lost count.”

“She can’t do Addition,” the Red Queen interrupted.

Lewis Carroll (1832–1898)
Through the Looking-Glass (1871)

We start by introducing the most basic types of data: Boolean values (True and False), integers

(. . . ,−2,−1, 0, 1, 2, . . .), rational numbers (fractions with integers as numerators and denominators), and

real numbers (including the integers and all the numbers in between them). The rest of this section will then

introduce some basic numerical operations: absolute values and rounding, exponentiation and logarithms,

summations and products. Figure 2.2 summarizes this section’s notation and definitions.

2.2.1 Booleans: True and False

The most basic unit of data is the bit: a single piece of information, which either takes on the value 0 or the

value 1. Every piece of stored data in a digital computer is stored as a sequence of bits. (See Section 2.4

for a formal definition of sequences.)

We’ll view bits from several different perspectives: 1 and 0, on and off, yes and no, True and False. Bits

viewed under the last of these perspectives have a special name, the Booleans:

Definition 2.1: Booleans.

A Boolean value is either True or False.

(Booleans are named after George Boole (1815–1864), a British mathematician, who was the first person

to think about True as 1 and False as 0.) The Booleans are the central object of study of Chapter 3, on

logic. In fact, they are in a sense the central object of study of this entire book: simply, we are interested in

making true statements, with a proof to justify why the statement is true.

2.2.2 Numbers: Integers, Reals, and Rationals

We’ll often encounter a few common types of numbers—integers, reals, and rationals:

Definition 2.2: Integers, reals, and rationals.

The integers, denoted by Z, are those numbers with no fractional part: 0, the positive integers (1, 2, . . .),

and the negative integers (−1,−2,−3, . . .).

The real numbers, denoted by R, are those numbers that can be (approximately) represented by

decimal numbers; informally, the reals include all integers and all numbers “between” any two integers.

The rational numbers, denoted byQ, are those real numbers that can be represented as a ratio n
m
of two

integers n and m, where n is called the numerator and m ̸= 0 is called the denominator. A real number

that is not rational is called an irrational number.

The superficially unintuitive notation for the integers, the symbol Z, is a stylized “Z” that was chosen because of the German

word Zahlen, which means “numbers.” The name rationals comes from the word ratio; the symbol Q comes from its synonym

quotient. (Besides, the symbol R was already taken by the reals, so the rationals got stuck with their second choice.)
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8 Basic Data Types

Booleans True and False

Z integers (. . . ,−3,−2,−1, 0, 1, 2, 3, . . .)

Q rational numbers

R real numbers

[a, b] those real numbers x where a ≤ x ≤ b

(a, b) those real numbers x where a < x < b

[a, b) those real numbers x where a ≤ x < b

(a, b] those real numbers x where a < x ≤ b

|x| absolute value of x: |x| = −x if x < 0; |x| = x if x ≥ 0

⌊x⌋ floor of x: x rounded down to the nearest integer

⌈x⌉ ceiling of x: x rounded up to the nearest integer

bn b multiplied by itself n times

b1/n, or
n
√
b a number y such that yn = b (where y ≥ 0 if possible), if one exists

bm/n (b1/n)m

logb x logarithm: logb x is the value y such that by = x, if one exists

n mod k modulo: n mod k = the remainder when dividing n by k

k | n k (evenly) divides n

∑
summation:

∑n
i=1 xi = x1 + x2 + · · · + xn

∏
product:

∏n
i=1 xi = x1 · x2 · · · · · xn

Figure 2.2 Summary of the basic mathematical notation introduced in Section 2.2.

Here are a few examples of each of these types of numbers:

Example 2.1: A few integers, reals, and rationals.

The following are all examples of integers: 1, 42, 0, and −17.

All of the following are real numbers: 1, 99.44, 1
3
= 0.33333 · · · , the ratio of the circumference of a

circle to its diameter π ≈ 3.14159 · · · , and the so-called golden ratio ϕ = (1+
√
5)/2 ≈ 1.61803 · · · .

Examples of rational numbers include 3
2
, 9
5
, 16

4
, and 4

1
. (In Chapter 8, we’ll talk about the familiar notion

of the equivalence of two rational numbers like 1
2
and 2

4
, or like 16

4
and 4

1
, based on common divisors.

See Example 8.36.) Of the example real numbers above, all of 1 and 99.44 and 0.3333 · · · are rational

numbers; we can write them as 1
1
and 4972

50
and 1

3
, for example. Both π and ϕ are irrational.

Note that all integers are rational numbers (with denominator equal to 1), and all rational numbers are real

numbers. But not all rational numbers are integers and not all real numbers are rational: for example, 3
2
is

not an integer, and
√
2 is not rational. (We’ll prove that

√
2 is not rational in Example 4.20.)

Taking it further: Definition 2.2 specifies Z, Q, and R somewhat informally. To be completely rigorous, one can define the

nonnegative integers as the smallest collection of numbers such that: (i) 0 is an integer; and (ii) if x is an integer, then x + 1 is

also an integer. See Section 5.4.1. (Of course, for even this definition to make sense, we’d need to define the number zero and

also define the operation of adding one.) With a proper definition of the integers, it’s fairly easy to define the rationals as ratios

of integers. But formally defining the real numbers is surprisingly challenging; it was a major enterprise of mathematics in the

late 1800s, and is often the focus of a first course in analysis in an undergraduate mathematics curriculum.

Nearly all programming languages support both integers (usually known as ints) and real numbers (usually known as floats);

see p. 21 for a bit about how these basic numerical types are implemented in real computers. (Rational numbers are much less

frequently implemented as basic data types in programming languages, though there are some exceptions, like Scheme.)

In addition to the basic symbols that we’ve introduced to represent the integers, the rationals, and the reals

(Z, Q, and R), we will also introduce special notation for some specific subsets of these numbers. We will
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0 1 2 3 4 5

1 4(a)

0 1 2 3 4 5

1 4(b)

0 1 2 3 4 5

1 4(c)

0 1 2 3 4 5

1 4(d)

Figure 2.3 Number lines representing real numbers between 1 and 4, with 1 included in the range in (b) and (c), and 4

included in the range in (b) and (d).

write 0 and 0 to denote the nonnegative integers (0 1 2 ) and nonpositive integers (0 1 2 ),

respectively. Generally, when we write with a superscripted condition, we mean all those integers for

which the stated condition is true. For example, 1 denotes all integers aside from 1. Similarly, we write
0 to denote the positive real numbers (every real number x 0). Other conditions in the superscript of

are analogous.

We’ll also use standard notation for intervals of real numbers, denoting all real numbers between two

specified values. There are two variants of this notation, which allow “between two specified values” to

either include or exclude those specified values. We use round parentheses to mean “exclude the endpoint”

and square brackets to mean “include the endpoint” when we denote a range. For example, a b denotes

those real numbers x for which a x b, and a b denotes those real numbers x for which a x b.

Sometimes a b and a b are, respectively, called the open interval and closed interval between a and b.

These four types of intervals are also sometimes denoted via a number line, with open and closed circles

denoting open and closed intervals; see Figure 2.3 for an example.

For two real numbers x and y, we will use the standard notation “x y” to denote that x is approximately

equal to y. This notation is defined informally, because what counts as “close enough” to be approximately

equal will depend heavily on context.

2.2.3 Absolute Value, Floor, and Ceiling

In the remaining parts of Section 2.2, we will give definitions of some standard arithmetic operations that

involve the numbers we just defined. We’ll start in here with three operations on a real number: absolute

value, floor, and ceiling.

The absolute value of a real number x, written x , denotes how far x is from 0, disregarding the sign of

x (that is, disregarding whether x is positive or negative):

Definition 2.3: Absolute value.

The absolute value of a real number x is x
x if x 0

x otherwise.

For example, 42 42 42 42 and 128 128. (Definition 2.3 uses notation for defining “by cases”:

the value of x is x when x 0, and the value of x is x otherwise—that is, when x 0.)

For a real number x, we can consider x “rounded down” or “rounded up,” which are called the floor and

ceiling of x, respectively:

Definition 2.4: Floor and ceiling.

The floor of a real number x, written x , is the largest integer that is less than or equal to x. The ceiling

of x, written x , is the smallest integer that is greater than or equal to x.
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8 Basic Data Types

Booleans True and False

integers ( 3 2 1 0 1 2 3 )

rational numbers

real numbers

a b those real numbers x where a x b

a b those real numbers x where a x b

a b those real numbers x where a x b

a b those real numbers x where a x b

x absolute value of x: x x if x 0; x x if x 0

x floor of x: x rounded down to the nearest integer

x ceiling of x: x rounded up to the nearest integer

bn b multiplied by itself n times

b1 n, or
n
b a number y such that yn b (where y 0 if possible), if one exists

bm n b1 n m

logb x logarithm: logb x is the value y such that by x, if one exists

n mod k modulo: n mod k the remainder when dividing n by k

k n k (evenly) divides n

summation: n
i 1 xi x1 x2 xn

product: n
i 1 xi x1 x2 xn

Figure 2.2 Summary of the basic mathematical notation introduced in Section 2.2.

Here are a few examples of each of these types of numbers:

Example 2.1: A few integers, reals, and rationals.

The following are all examples of integers: 1, 42, 0, and 17.

All of the following are real numbers: 1, 99 44, 1
3

0 33333 , the ratio of the circumference of a

circle to its diameter π 3 14159 , and the so-called golden ratio 1 5 2 1 61803 .

Examples of rational numbers include 3
2
, 9
5
, 16

4
, and 4

1
. (In Chapter 8, we’ll talk about the familiar notion

of the equivalence of two rational numbers like 1
2
and 2

4
, or like 16

4
and 4

1
, based on common divisors.

See Example 8.36.) Of the example real numbers above, all of 1 and 99 44 and 0 3333 are rational

numbers; we can write them as 1
1
and 4972

50
and 1

3
, for example. Both π and are irrational.

Note that all integers are rational numbers (with denominator equal to 1), and all rational numbers are real

numbers. But not all rational numbers are integers and not all real numbers are rational: for example, 3
2
is

not an integer, and 2 is not rational. (We’ll prove that 2 is not rational in Example 4.20.)

Taking it further: Definition 2.2 specifies , , and somewhat informally. To be completely rigorous, one can define the

nonnegative integers as the smallest collection of numbers such that: (i) 0 is an integer; and (ii) if x is an integer, then x 1 is

also an integer. See Section 5.4.1. (Of course, for even this definition to make sense, we’d need to define the number zero and

also define the operation of adding one.) With a proper definition of the integers, it’s fairly easy to define the rationals as ratios

of integers. But formally defining the real numbers is surprisingly challenging; it was a major enterprise of mathematics in the

late 1800s, and is often the focus of a first course in analysis in an undergraduate mathematics curriculum.

Nearly all programming languages support both integers (usually known as ints) and real numbers (usually known as floats);

see p. 21 for a bit about how these basic numerical types are implemented in real computers. (Rational numbers are much less

frequently implemented as basic data types in programming languages, though there are some exceptions, like Scheme.)

In addition to the basic symbols that we’ve introduced to represent the integers, the rationals, and the reals

( , , and ), we will also introduce special notation for some specific subsets of these numbers. We will
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0 1 2 3 4 5

(1, 4)(a)

0 1 2 3 4 5

[1, 4](b)

0 1 2 3 4 5

[1, 4)(c)

0 1 2 3 4 5

(1, 4](d)

Figure 2.3 Number lines representing real numbers between 1 and 4, with 1 included in the range in (b) and (c), and 4

included in the range in (b) and (d).

writeZ≥0 andZ≤0 to denote the nonnegative integers (0, 1, 2, . . .) and nonpositive integers (0,−1,−2, . . .),

respectively. Generally, when we write Z with a superscripted condition, we mean all those integers for

which the stated condition is true. For example, Z ̸= 1 denotes all integers aside from 1. Similarly, we write

R
>0 to denote the positive real numbers (every real number x > 0). Other conditions in the superscript of

R are analogous.

We’ll also use standard notation for intervals of real numbers, denoting all real numbers between two

specified values. There are two variants of this notation, which allow “between two specified values” to

either include or exclude those specified values. We use round parentheses to mean “exclude the endpoint”

and square brackets to mean “include the endpoint” when we denote a range. For example, (a, b] denotes

those real numbers x for which a < x ≤ b, and [a, b) denotes those real numbers x for which a ≤ x < b.

Sometimes (a, b) and [a, b] are, respectively, called the open interval and closed interval between a and b.

These four types of intervals are also sometimes denoted via a number line, with open and closed circles

denoting open and closed intervals; see Figure 2.3 for an example.

For two real numbers x and y, we will use the standard notation “x ≈ y” to denote that x is approximately

equal to y. This notation is defined informally, because what counts as “close enough” to be approximately

equal will depend heavily on context.

2.2.3 Absolute Value, Floor, and Ceiling

In the remaining parts of Section 2.2, we will give definitions of some standard arithmetic operations that

involve the numbers we just defined. We’ll start in here with three operations on a real number: absolute

value, floor, and ceiling.

The absolute value of a real number x, written |x|, denotes how far x is from 0, disregarding the sign of

x (that is, disregarding whether x is positive or negative):

Definition 2.3: Absolute value.

The absolute value of a real number x is |x| =

{

x if x ≥ 0

−x otherwise.

For example, |42.42| = 42.42 and |−128| = 128. (Definition 2.3 uses notation for defining “by cases”:

the value of |x| is x when x ≥ 0, and the value of |x| is −x otherwise—that is, when x < 0.)

For a real number x, we can consider x “rounded down” or “rounded up,” which are called the floor and

ceiling of x, respectively:

Definition 2.4: Floor and ceiling.

The floor of a real number x, written ⌊x⌋, is the largest integer that is less than or equal to x. The ceiling

of x, written ⌈x⌉, is the smallest integer that is greater than or equal to x.
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10 Basic Data Types

−3 −2 −1 0 1 2 3 4 5

⌊√
2
⌋

= 1

⌈√
2
⌉

= 2
⌊

−
√
2
⌋

= −2

⌈

−
√
2
⌉

= −1

⌊4⌋ = 4

⌈4⌉ = 4

Figure 2.4 The floor and ceiling of −
√
2,

√
2, and 4.

Note that Definition 2.4 defines the floor and ceiling of negative numbers, too; the definition doesn’t care

whether x is greater than or less than 0. Here are a few examples:

Example 2.2: A few floors and ceilings.

We have ⌊
√
2⌋ = ⌊1.4142 · · ·⌋ = 1 and ⌊2π⌋ = ⌊6.28318 · · ·⌋ = 6 and ⌊4⌋ = 4. For ceilings, we have

⌈
√
2⌉ = 2 and ⌈2π⌉ = 7 and ⌈4⌉ = 4.

For negative numbers, ⌊−
√
2⌋ = ⌊−1.4142 · · ·⌋ = −2 and ⌈−

√
2⌉ = −1.

The number line may give an intuitive way to think about floor and ceiling: ⌊x⌋ denotes the first integer that
we encounter moving left in the number line starting at x; ⌈x⌉ denotes the first integer that we encounter

moving right from x. (And x itself counts for both definitions.) See Figure 2.4.

2.2.4 Exponentiation

We next consider raising a number to an exponent or power.

Definition 2.5: Raising a number to an integer power.

For a real number b and a nonnegative integer n, the number bn denotes the result of multiplying b by

itself n times:

b0 = 1 and, for n ≥ 1, bn = b · b · · · · · b
n times

.

The number b is called the base and the integer n is called the exponent.

For example, 20
= 1 and 22

= 2 · 2 = 4 and 25
= 2 · 2 · 2 · 2 · 2 = 32 and 52

= 5 · 5 = 25.

Taking it further: Note that Definition 2.5 says that b0 = 1 for any base b, including b = 0. The case of 00 is a little tricky: one

is tempted to say both “0 to the anything is 0” and “anything to the 0 is 1.” But, of course, these two statements are inconsistent.

Lots of people define 00 as 1 (as Definition 2.5 does); lots of other people (particularly those who are giving definitions based on

calculus) treat 00 as undefined. We’ll live in the first camp because it won’t get us in any trouble, and some results that we’ll see

in later chapters become more convoluted and more annoying to state if 00 were undefined. If you’re interested in reading more

about the (over 200 years’ worth of) history and the reasoning behind this decision, see [58].

Raising a base to nonintegral exponents

Consider the expression bx for an exponent x > 0 that is not an integer. (It’s all too easy to have done

this calculation by typing numbers into a calculator without actually thinking about what the expression

actually means!) Here’s the definition of bm/n when the exponent m
n
is a rational number:
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Definition 2.6: Raising a number to a positive rational power.

For a real number b and for a positive integer n 0, the expression b1 n denotes the number y such that

yn b. (If there are two values of y with yn b, then b1 n means the one that’s positive. If there are no

values of y with yn b, then b1 n is undefined.)

For a positive integer m, the expression bm n denotes the mth power of b1 n: that is, bm n b1 n m.

The value b1 n is called the nth root of b, and it can also be denoted by
n
b.

For example, 161 2 4 because 161 2 is the value y such that y2 16, and 42 16. Similarly, 161 4 2

because 24 16. So 161 2 2
16 is 4, and the 4th root of 16 is 2. (As the definition suggests, there may be

more than one y such that yn b. For example, both y 2 and y 2 satisfy the condition that y4 16.

By the definition, if there are positive and negative values of y satisfying the requirement, we choose the

positive one. So 161 4 2, not 2.) Here are a few other examples:

Example 2.3: Some fractional exponents.

The value of 51 2 is roughly 2 2360679774, because 2 23606797742 5. (But note that this value of

51 2 is only an approximation, because actually 2 23606797742 4 99999999955372691076 5.)

When the base is negative, the nth root does not always exist. To find the value of 8 1 3, we need to

find a y such that y3 8. No y 0 satisfies this condition, but y 2 does. Thus 8 1 3 2. On

the other hand, let’s try to compute the value of 8 1 2. We would need a value y such that y2 8.

But no y 0 satisfies this condition, and no y 0 does either. Thus 8 1 2 is undefined.

When we write b without explicitly indicating which root is intended, then we are talking about the

square root of b. In other words, b
2
b denotes the (nonnegative) value y such that y2 b. An integer

n is called a perfect square if n is an integer.

Taking it further: Definition 2.6 presents difficulties if we try to compute, say, 1: the definition tells us that we need to

find a number y such that y2 1. But y2 0 if y 0 and also if y 0, so no real number y satisfies the requirement

y2 1. (We had the same problem in Example 2.3, in trying to compute 8 1 2.) To handle this situation, several centuries

ago some creative mathematicians defined the imaginary numbers as those resulting from taking the square root of negative

numbers, specifically defining i 1. (The name “real” to describe real numbers was chosen to contrast with the imaginary

numbers.) We will not be concerned with imaginary numbers in this book, although—perhaps surprisingly—there are some very

natural computational problems in which imaginary numbers are fundamental parts of the best algorithms solving them, such as

the Fast Fourier transform in signal processing and speech processing (transcribing English words from a raw audio stream) or

even quickly multiplying large numbers together [32].

Definition 2.7: Raising a number to a negative power.

When the exponent x is negative, then bx is defined as 1
b x .

For example, 2 4 1
24

1
16

and 25 3 2 1
253 2

1
251 2 3

1
53

1
125

.

For an irrational exponent x, the value of bx is approximated arbitrarily closely by choosing a rational

number m
n
sufficiently close to x and computing the value of bm n.

Taking it further: A rigorous treatment of irrational powers requires calculus; we will omit the details as they are tangential to

our purposes in this book. But the basic idea is to approximate the exponent with a close-enough rational number, which then

provably approximates the result of raising the base to that power. For example, we can approximate 2π 8 82497782708

more and more closely as 23 8, or 231 10 8 5741 , or 2314 100 8 8815 , or 23141 1000 8 8213 , etc.
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