REASSESSING PALEOLITHIC SUBSISTENCE

The contribution of Neandertals to the biological and cultural emergence of early modern humans remains highly debated in anthropology. Particularly controversial is the long-held view that Neandertals in western Europe were replaced 30,000 to 40,000 years ago by early modern humans expanding out of Africa. This book contributes to this debate by exploring the diets and foraging patterns of both Neandertals and early modern humans. Eugène Morin examines the faunal remains from Saint-Césaire in France, which contain an exceptionally long and detailed chronological sequence, as well as genetic, anatomical, and archaeological evidence, to shed new light on the problem of modern human origins.

Eugène Morin is an Assistant Professor in the Department of Anthropology at Trent University in Canada. He has published articles in *Journal of Archaeological Science, Geoarchaeology,* and *PNAS* and serves on the editorial board of *Ethnobiology Letters.*
REASSESSING PALEOLITHIC SUBSISTENCE

The Neandertal and Modern Human Foragers of Saint-Césaire

EUGÈNE MORIN
Trent University, Canada
A Laure, Lucas, Charles, et Louis
pour leur amour, leur patience, et leur soutien
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xxi</td>
</tr>
<tr>
<td>Prologue</td>
<td>xxiii</td>
</tr>
<tr>
<td>1 The Research Problem</td>
<td>1</td>
</tr>
<tr>
<td>Framing the Problem: Did Neandertals and Early Modern Humans Differ in Terms of Foraging Behaviors?</td>
<td>2</td>
</tr>
<tr>
<td>Organization of the Book</td>
<td>4</td>
</tr>
<tr>
<td>2 Human Origins and the Problem of Neandertals</td>
<td>5</td>
</tr>
<tr>
<td>Twentieth-Century Thought and the Emergence of the Replacement Model</td>
<td>5</td>
</tr>
<tr>
<td>Saint-Césaire and the Upper Paleolithic Neandertals</td>
<td>7</td>
</tr>
<tr>
<td>Current Issues in the Modern Human Origins Debate</td>
<td>10</td>
</tr>
<tr>
<td>Early Modern Human Fossils in Europe</td>
<td>10</td>
</tr>
<tr>
<td>Geographic Origin of the Aurignacian</td>
<td>11</td>
</tr>
<tr>
<td>Early Modern Human versus Neandertal Behaviors</td>
<td>12</td>
</tr>
<tr>
<td>Genetic Evidence for a Population Expansion</td>
<td>13</td>
</tr>
<tr>
<td>Formulation of a Test Applicable to Archaeological Remains</td>
<td>16</td>
</tr>
<tr>
<td>The Demic Expansion Hypothesis and Its Ecological Implications</td>
<td>16</td>
</tr>
<tr>
<td>Assumptions Underlying the Archaeological Test</td>
<td>18</td>
</tr>
<tr>
<td>3 Foraging Theory and the Archaeological Record</td>
<td>19</td>
</tr>
<tr>
<td>The Prey Choice Model</td>
<td>21</td>
</tr>
<tr>
<td>The Patch Choice Model</td>
<td>22</td>
</tr>
<tr>
<td>The Marginal Value Theorem</td>
<td>23</td>
</tr>
<tr>
<td>Central Place Foraging Models</td>
<td>25</td>
</tr>
<tr>
<td>Problems in Archaeological Applications</td>
<td>27</td>
</tr>
<tr>
<td>The Body Size Rule</td>
<td>27</td>
</tr>
<tr>
<td>Abundance Indices</td>
<td>37</td>
</tr>
<tr>
<td>Currency and Foraging Goals in Humans</td>
<td>38</td>
</tr>
<tr>
<td>Operationalizing the Test of the Intensification Hypothesis</td>
<td>39</td>
</tr>
<tr>
<td>A Problem of Equifinality: Climate as a Cause of Diet Widening</td>
<td>39</td>
</tr>
</tbody>
</table>
Contents

Faunal Implications with Respect to Prey Choice 41
Prey Choice at the Individual Level 47
Selection of Marrow and Bone Grease Elements 51
Why Saint-Césaire? 51
Summary of the Predictions 52

4 Saint-Césaire 54
The Site Stratigraphy 57
Morphology of the Deposit 60
Chronology of the Occupations 61
Human Remains 62
Paleoecological Setting 63

5 The Fauna 65
Samples and Methods 65
Estimating Abundance in the Faunal Samples 66
Refitting 69
Analysis of the Specimens 70
Statistical Methods 73
Presentation of the Faunal Samples 73
Taxonomic Composition of the Assemblages 75
Bison or Aurochs? 77
Other Faunal Remains 80
Skeletal Part Representation at Saint-Césaire 83

6 Taphonomy 93
The Chronological Grain at Saint-Césaire 93
Recovery Methods 94
Specimen Fragmentation 95
Patterns of Preservation 98
Types of Damage 104
Agents of Accumulation 105
Retouchers 108
Carnivores 110
The Impact of Identification Filters on the Assemblages 113
Differential Identification of Skeletal Elements 113
Differential Identification of Long Bone Shafts 118
Effects of Counting Methods on Head Representation 120
Scalar Effects in Species Identification 122
Burning 125
Conclusions on Taphonomy 131

7 Seasonality 132
Biology of the Main Ungulate Species at Saint-Césaire 132
Reindeer 132
Bison and Horse 133
Contents

Synchrony of Birthing in Reindeer, Bison, and Horse 134
Seasonality Patterns in Pleistocene Assemblages from France 135
Methods Used at Saint-Césaire for Deriving Seasonality Data 137
Dental Remains 137
Antler Development and Cycle 139
Bone Fusion 144
Fetal Bones 145
Incorporating Variation in Birth Synchrony in Fetal Age Estimates 145
Seasons of Procurement in the Assemblages 146
Conclusions on Seasonality Patterns at Saint-Césaire 159

8 Transport Decisions and Currency Analysis 162
Methodological Notes on the Study of Skeletal Representation 162
Results of the Inter-Assemblage Rank-Order Correlations 164
Selection of a Currency 166
Transport Decisions in the Reindeer Assemblages 167
Transport Decisions in the Bison Assemblages 170
Transport Decisions in the Horse Assemblages 174
Summary of the Currency Analysis 179

9 Testing the Hypotheses 180
Encounter Rates with High-Return Prey Taxa 181
Bison Availability 181
Horse Availability 181
Age Structure Analysis 184
Juvenile and Old Adult Representation in the Reindeer Assemblages 184
Conclusions about Reindeer Age Structure 185
Transport of Bison and Reindeer Parts 186
Cranium Transport 186
Digit Transport 190
Long Bone Transport 192
Conclusions on Transport Strategies 198
Prey Choice at Saint-Césaire 200
Exploitation of Fast Small-Sized Taxa in the Dry Land Patch 200
Prey Choice in the Wetland and Freshwater Patches 206
Intensity of Bone Processing 207
Bone Grease Rendering 209
Summary and Discussion 210

10 Diet Breadth at the Regional Level 212
Grotte du Renne (Arcy-sur-Cure) 212
The Faunal Assemblages 213
Transport Decisions 213
Fast Small-Bodied Taxa 214
Bone Processing 216
Abri Pataud 218
Contents

The Faunal Assemblages 218
Transport Decisions 218
Fast Small-Bodied Taxa 219
Bone Processing 221
Summary of Diet Breadth in Western France 221
Diet Breadth in Other Regions of Europe and Southwest Asia 221
 The Northeastern Plains 224
 Iberia 226
 Mediterranean France 230
 Italy 231
 The Eastern Mediterranean 234
Discussion 236
Conclusions on Diet Breadth in Europe and Western Asia 242

11 An Alternative Look at the Middle to Upper Paleolithic Transition 247

How General Was the Shift toward Reindeer Dominance in the Early Aurignacian? 248
Results of the Reindeer Dominance Analysis 250
Revisiting Mellars’s Reindeer Specialization Hypothesis 250
The Relationship between Human Density and Mammal Species Diversity 253
Environmental Carrying Capacity in Late Pleistocene France 257
The Time Series 260
 Reindeer Peaks and Millennial-Scale Climatic Events 263
The Early Upper Paleolithic “Anomaly” 267
Demographic and Genetic Implications 268

12 Concluding Thoughts 272

Appendices 275
References 311
Index 357
LIST OF FIGURES

2.1. Location of Saint-Césaire and some other important sites cited in the text. page 7

2.2. Hypothetical migration route followed by expanding modern human populations according to the replacement model. 11

2.3. The genealogy of the microcephalin gene. 15

3.1. Bivariate plot showing the relation between maximal running speed and body mass in small (≤150 kg) versus large (>150 kg) terrestrial mammals. 31

3.2. Large mammal versus micromammal species diversity, as measured by the Reciprocal of Simpson’s Index, in the Saint-Césaire levels. 41

3.3. Body weight of prey taxa for the dry land, wetland, and freshwater patches. 45

3.4. Bar graph showing body fat for prey taxa belonging to the dry land and wetland patches. 47

4.1. Cross-sectional view of the valley where Saint-Césaire is located. 55

4.2. Saint-Césaire in 1976, shortly after its discovery. 55

4.3. View of the Saint-Césaire excavations from the access road. 56

4.4. Excavation of the very rich Denticulate Mousterian EGPF level. 56

4.5. The archaeological sequence at Saint-Césaire. 57

4.6. The lower archaeological sequence of Saint-Césaire. 60

4.7. A section of the “charnier” (bone midden) uncovered during the excavation of the Middle Aurignacian EJF level. 61

4.8. Reconstruction of the Saint-Césaire sagittal stratigraphy based on a three-dimensional analysis of piece-plotted artifacts. 62

4.9. The Saint-Césaire 1 Neandertal. 63

5.1. Textural differences that motivated the decision to split the EJOP (lower photograph) and EJO (upper photograph) layers into upper and lower units. 66

5.2. Features on the reindeer radio-ulna and metatarsal used for calculating the MNE in this study. 69

5.3. Bison metatarsal from Saint-Césaire showing evidence of sheeting. 71

5.4. An exfoliated long bone from Saint-Césaire. 71

5.5. Classes of bone surface preservation. 72

5.6. Density of bones (NISP/m3) by level at Saint-Césaire. 74

5.7. A section of the “charnier” (bone midden) uncovered during the excavation of the Middle Aurignacian EJF level. 61
List of Figures

5.7. Percentages of reindeer, bison, and horse remains by level at Saint-Césaire. 79
5.8. Bison body part representation in five assemblages from Saint-Césaire. 84
5.9. Horse body part representation in five assemblages from Saint-Césaire. 84
5.10. Reindeer body part representation in six assemblages from Saint-Césaire. 85
5.11. Relative abundances of proximal, shaft, and distal portions of bison long bones in four assemblages from Saint-Césaire. 85
5.12. Relative abundances of proximal, shaft, and distal portions of horse long bones in four assemblages from Saint-Césaire. 86
5.13. Relative abundances of proximal, shaft, and distal portions of reindeer long bones by level in six assemblages from Saint-Césaire. 87
5.14. A refitted portion of a bison vertebral column from the Middle Aurignacian EJF occupation. 91
6.1. Vertical distribution of all refits on green-bone fractures from Saint-Césaire. 94
6.2. Comparison of the distributions of burned and unburned bones by size classes at Saint-Césaire. 95
6.3. Samples of fragmented faunal remains from Saint-Césaire. 96
6.4. Examples of reindeer mandibles from the Middle Aurignacian EJF layer. 96
6.5. Patterns of fragmentation in the Saint-Césaire occupations, based on the mean length of reindeer tibia, metatarsal, and rib fragments, and the percentage of reindeer mandibular tooth rows. 97
6.6. Variation in average fragmentation across the Saint-Césaire sequence. 98
6.7. Percentages of cut-marked tibia and metatarsal specimens of reindeer for three size classes. 99
6.8. The square grid at Saint-Césaire. 100
6.9. Percentages of bones that have either a damaged or poorly preserved surface by level and distance from the cliff. 101
6.10. Relationship between percentages of cutmarks and quality of bone surface preservation. 101
6.11. NISP abundance by level and as a function of the distance away from the cliff. 103
6.12. Schematic representation of the distribution of root etching at Saint-Césaire. 104
6.13. Subrectangular shaft splinters on a UNG3–4 long bone resulting from sheeting. 104
6.14. Cutmarks on a (a) reindeer second phalanx, (b) reindeer greater cuneiform, (c) bison metatarsal, (d) reindeer humerus. 107
6.15. Long bone shaft fragments from Saint-Césaire showing percussion notches. 108
6.16. Concentration of retouch marks on a retoucher from Saint-Césaire. 109
6.17. Retouchers from Saint-Césaire. 109
6.18. Specimens from Saint-Césaire showing evidence of carnivore ravaging. 111
6.19. A first phalanx of horse showing evidence of digestion (left) compared with an undamaged specimen (right) from Saint-Césaire. 111
List of Figures

6.20. Hypothetical model showing the relationship between identifiability and degree of fragmentation in deposited versus excavated assemblages. 114
6.21. Inferred relationship between tooth representation and degree of fragmentation in an assemblage that comprises tooth, femur, and fetal bone specimens. 115
6.22. Percentages of skeletal elements in the NSUTS and NISP samples at Saint-Césaire. 117
6.23. Model showing the relationship between differential identification and percentages of refits for two reindeer bones. 118
6.24. Percentages of refitted reindeer long bones by size class (in mm²). 119
6.25. Hypothetical model illustrating the relationship between identification, skeletal representation, and sample size in fragmented assemblages. 121
6.26. Relationship between the size (in NISP) of several reindeer, horse, and bison assemblages and cranium and mandible representation at Saint-Césaire. 122
6.27. Percentages of skull, scapula, foreleg, and vertebra specimens that are burned in the reindeer samples from the Middle Aurignacian EJO sup, EJF, and Evolved Aurignacian EJM levels. 126
6.28. Percentages of rib, pelvis, hindleg, and phalanx specimens that are burned in the reindeer assemblages from the Middle Aurignacian EJO sup, EJF, and Evolved Aurignacian EJM levels. 127
6.29. Burned and unburned reindeer specimens recovered in the Middle Aurignacian EJF layer from Saint-Césaire. 128
6.30. Percentages of burned proximal epiphyses, midshafts, and distal epiphyses versus the abundance (MNE counts) of the same bone portions at Saint-Césaire. 130
7.1. A simplified summary of the annual antler cycle in reindeer. 141
7.2. Measurements taken on the reindeer antlers of Saint-Césaire. 143
7.3. Regression of burr circumference versus anteroposterior diameter for the reindeer antlers of Saint-Césaire. 144
7.4. Regressions of ontogenic age (in days) versus diaphyseal length (in mm) for horse fetal bones. 147
7.5. Distribution of antler burr circumference versus anteroposterior diameter in the reindeer assemblages of Saint-Césaire. 149
7.6. Crown height measurements for reindeer d₄ and d₃ from Saint-Césaire compared to Verberie. 151
7.7. Shed antlers of reindeer from the Mousterian/Châtelperronian level of Saint-Césaire. 152
7.8. A reindeer antler from the low-density (EJO inf) assemblage refitted with its pedicle. 153
7.9. Estimated season of death for the horse fetal remains of Saint-Césaire. 154
7.10. A horse d₃ or d₄ (right) from the Middle Aurignacian EJF level of Saint-Césaire. 154
7.11. Variation in the percentage of unshed antlers in the sequence of Saint-Césaire. 156

xiii
List of Figures

7.12. Fetal horse radii from the Middle Aurignacian EJF level of Saint-Césaire. 157
7.13. Fetal horse humeri from the Middle Aurignacian EJF (upper left) and the Evolved Aurignacian EJM (lower left) levels. 157
7.15. Two unshed antlers attributed to reindeer males from the Evolved Aurignacian EJM level of Saint-Césaire. 159
7.16. Summary of the seasonal evidence for the Saint-Césaire assemblages. 160
8.1. Abundance of reindeer skeletal parts (%MAU values) in six assemblages from Saint-Césaire versus the (S)FUI and the percentage of parts selected for grease rendering by two Nunamiut. 169
8.2. Relationship between the abundance of skeletal parts (%MAU values) in six reindeer assemblages from Saint-Césaire and the Unsaturated Marrow Index. 171
8.3. Abundance of bison skeletal parts (%MAU values) in four assemblages from Saint-Césaire versus the Food Utility and Total Fat models. 172
8.4. Abundance of bison skeletal parts (%MAU values) in four assemblages from Saint-Césaire and the Unsaturated Marrow Index and Skeletal Fat models. 175
8.5. Abundance of horse skeletal parts (%MAU values) in five assemblages from Saint-Césaire and the (S)FUI and Marrow models. 177
9.1. Variation in the Bison Index (\(\sum\) NISP bison/\(\sum\) NISP bison + reindeer) at Saint-Césaire. 182
9.2. Variation in the Horse and Bison Indices (lower panel) at Saint-Césaire compared with patterns of micromammal diversity (upper panel). 183
9.3. Percentages of juvenile (middle panel) and old adult (lower panel) teeth in five reindeer tooth samples compared with the taxonomic abundance of reindeer and the Bison Index (upper panel). 187
9.4. Proportions of bison mandibles compared with the Bison Index in five tooth samples from Saint-Césaire. 189
9.5. Proportions of reindeer mandibles compared with the taxonomic representation of reindeer in six tooth samples from Saint-Césaire. 191
9.6. Percentages of bison phalanges and sesamoids compared with the Bison Index in six assemblages from Saint-Césaire. 193
9.7. Percentages of reindeer first phalanges, second phalanges, third phalanges, and sesamoids across the Saint-Césaire occupations. 194
9.8. Percentages of digit bones and the taxonomic abundance of reindeer across the Saint-Césaire occupations. 195
9.9. Mean UMI values for bison long bones compared with the Bison Index in five assemblages from Saint-Césaire. 196
9.10. Mean UMI values for reindeer long bones compared with the taxonomic representation of reindeer in seven assemblages from Saint-Césaire. 197
9.11. Diversity values for bison long bones compared with the Bison Index in five assemblages from Saint-Césaire. 199
9.12. Diversity values for reindeer long bones compared with the taxonomic representation of reindeer in seven assemblages from Saint-Césaire. 201
List of Figures

9.13. Variation in the Large Ungulate–Fox Index at Saint-Césaire (middle panel) compared with micromammal diversity and the Bison Index. 202
9.14. A fox calcaneum from the Middle Aurignacian EJF level showing a puncture mark presumably produced by a carnivore or raptor. 203
9.15. Relationship between the relative abundance of carnivore remains (NISP counts), the percentage of burned bones, and the percentage of specimens modified by carnivores in the Saint-Césaire sequence. 204
9.16. Variation in the Large Ungulate–Small Taxa Index at Saint-Césaire (middle panel) compared with micromammal diversity and the Bison Index. 205
9.17. A marrow-cracked mandible (left) from the Evolved Aurignacian EJJ level and a marrow-cracked second phalanx (right) from the Middle Aurignacian EJO sup level. 207
9.18. Reindeer first phalanges uncovered in the Middle Aurignacian EJF layer from Saint-Césaire. 208
9.19. Percentages of broken first and second phalanges of reindeer in the Saint-Césaire sequence. 209
10.1. Variation in the Large Ungulate–Fox Index (upper diagram) and the Large Ungulate–Hare Index (lower diagram) at Grotte du Renne. 217
10.2. Location of sites mentioned in the text. Most of these sites show possible evidence for early dietary use of small swift animals. 225
10.3. Relative abundances of small swift prey taxa in archaeological sequences from Eurasia. 239
10.4. Trends toward diet widening in Europe and southwest Asia during MIS 3–1. 243
10.5. Distribution of sites with early evidence for small swift prey exploitation. 245
11.1. Taxonomic representation of reindeer, bison, and horse at Saint-Césaire. 248
11.2. Ternary diagram showing variations in the relative abundances of reindeer, bison/red deer, and horse in final Mousterian, Châtelperronian, and Proto/Early Aurignacian assemblages from western France. 251
11.3. Percentages of bovines/red deer compared with variations in macro- and micromammal diversity at Saint-Césaire and Roc de Combe. 253
11.4. Relative abundances of reindeer and narrow-skulled vole at Saint-Césaire and Roc de Combe. 254
11.5. Relationship between current mammal species diversity and the historical population densities of 18 North American Arctic, Subarctic, and Plains forager groups. 255
11.6. Composite series of faunal assemblages showing variations in the percentage of reindeer and in ungulate species diversity between the end of MIS 6 and the beginning of MIS 1. 261
11.7. Correlation between the relative abundance of reindeer and the relative abundance of cold-adapted micromammals (Male/root vole, narrow-skulled vole, and the collared lemming) in the time series. 263
11.8. Correlations between the composite time series and various climatic proxies from the marine and glacial records. 265
List of Figures

11.9. Absolute percent change in reindeer representation (lower diagram) and species diversity (upper diagram) between stratigraphically adjacent layers. 268

11.10. Demographic model for western Europe representing change in the distribution and density of human populations during the early Upper Paleolithic. 269

11.11. Possible effects of genetic drift on the genealogy of archaic sapiens and early modern humans. 270
LIST OF TABLES

3.1. Data on maximal running speed (km/hr) and body mass (in kg) in terrestrial mammals page 29
3.2. Standardized residuals for the relationship between maximal running velocity and body mass 32
3.3. Data on the relationship between body mass and postencounter return rates combined with information on latitude, mean annual temperature, and body mass characteristics of the faunas 36
3.4. Scientific and common names of the species identified at Saint-Césaire and at other Late Pleistocene sites in the study region 42
3.5. Body mass and fat weight for species assigned to the dry land and wetland patches 46
4.1. Changes in the cultural attributions of the occupations at Saint-Césaire 58
4.2. Summary of the Saint-Césaire stratigraphy 59
5.1. Body size classes adopted in this study 67
5.2. Protocol adopted in refitting the faunal remains from Saint-Césaire 70
5.3. Surface and volume analyzed by level at Saint-Césaire 73
5.4. Density of faunal remains and taxonomically identified specimens per level, excluding birds and microfaunal remains 74
5.5. Pre-refit and post-refit NISP counts for the levels of Saint-Césaire 75
5.6. Percentages of ungulates, carnivores, and other taxa in the assemblages from Saint-Césaire 76
5.7. Relative abundance (in NISP) of reindeer, bison, horse, and some major taxonomic groups in the occupations from Saint-Césaire 76
5.8. NISP counts by species for mammal and fish remains from Saint-Césaire 77
5.9. MNE counts by species for mammal and fish remains from Saint-Césaire 80
5.10. NISP counts for the bird remains by species and level at Saint-Césaire 82
5.11. MNI counts for microfaunal remains by species and level at Saint-Césaire 83
5.12. Percentage of burning in the occupations from Saint-Césaire 88
5.13. Distribution of cutmarks on reindeer bones by body part and level at Saint-Césaire 89
5.14. Distribution of cutmarks on horse bones by body part and level at Saint-Césaire 90
5.15. Distribution of cutmarks on bison bones by body part and level at Saint-Césaire 90
5.16. Distribution of cutmarks on large mammals by body part and level at Saint-Césaire 90
List of Tables

6.1. Bone surface preservation by level in bone samples dominated by long bone fragments 100
6.2. Incidence of root marks by level and as a function of distance from the cliff at Saint-Césaire 102
6.3. Percentages of long bones with evidence of sheeting, exfoliation, and cracks as a function of distance from the cliff at Saint-Césaire 105
6.4. Percentages of bones with anthropic modifications in the Saint-Césaire occupations 106
6.5. Incidence of gnawing and digestion marks by level at Saint-Césaire 112
6.6. Incidence of carnivore damage by species in the Saint-Césaire assemblages 112
6.7. Mean fragment lengths of bison and horse long bones for a series of assemblages 113
6.8. Percentages of refitted long bone fragments for bison at Saint-Césaire 120
6.9. Percentages of NISP versus total specimen counts by level at Saint-Césaire, excluding birds and microfauna 123
6.10. Percentages of long bones in the NISP and indeterminate samples 124
6.11. Incidence of cracks on long bones for three different species in the best-preserved lines of Saint-Césaire 124
6.12. Percentages of burned specimens in the assemblages as a function of the level of identification 125
6.13. Variation in body part representation of burned specimens in the NISP and NSUTS samples 129
6.14. Percentages of burned diaphyses and epiphyses at Saint-Césaire, based on NISP 130
6.15. Percentages of burned long bones of size-2 ungulates (UNG2) and size 3–4 ungulates (UNG3–4) in the Saint-Césaire occupations 131
7.1. Arbitrary age classes used in the analysis of the reindeer teeth from Saint-Césaire 138
7.2. Equations used to estimate the ontogenic age (in days) of fetal horse bones 145
7.3. Percentages of shed and unshed antlers by level at Saint-Césaire 148
7.4. Distribution of fetal bones by species and level 148
7.5. Distribution of reindeer teeth by age class for individuals younger than 24 months 150
7.6. Estimation of season of death, including confidence intervals, for the fetal bones from Saint-Césaire 155
8.1. Selected scan sites for wildebeest, horse, and reindeer presented in decreasing order of density 163
8.2. Spearman’s rho correlations between reindeer assemblages at Saint-Césaire 165
8.3. Spearman’s rho correlations between bison assemblages at Saint-Césaire 165
8.4. Spearman’s rho correlations between horse assemblages at Saint-Césaire 166
8.5. Correlations between the abundance of reindeer skeletal parts in six assemblages from Saint-Césaire and two models: i) the Food Utility Index and ii) the percentages of parts selected for grease rendering by two Nunamiut women 167
List of Tables

8.6. Correlations between the abundance of skeletal parts in six reindeer assemblages from Saint-Césaire and the Unsaturated Marrow Index
8.7. Abundance of bison skeletal parts in four assemblages from Saint-Césaire versus the Food Utility Index and the Total Fat model
8.8. Abundance of bison skeletal parts in four assemblages from Saint-Césaire versus the Marrow, Skeletal Fat, and Unsaturated Marrow Index
8.9. Abundance of horse skeletal parts in five assemblages from Saint-Césaire and the FUI, Marrow, and UMI models
8.10. The Unsaturated Marrow Index as applied to horse
10.1. Spearman’s rho correlations between the skeletal profiles from Grotte du Renne and those from Saint-Césaire
10.2. Spearman’s rho correlations between the abundances of elements in the Châtelperronian and Aurignacian of Grotte du Renne and various utility models for reindeer
10.3. Spearman’s rho correlations between reindeer and horse assemblages from Abri Pataud and Saint-Césaire
10.4. Spearman’s rho correlations between the abundances of skeletal parts in the Early Aurignacian of Abri Pataud and various utility models for reindeer.
10.5. Patterns of small prey representation in transitional sequences from Europe and southwest Asia
10.6. Late Pleistocene Mousterian and Aurignacian assemblages from Europe and southwest Asia that contain specimens of fast small-bodied species with possible butchery marks
11.1. Faunal assemblages from western France used in the analysis of reindeer dominance
11.2. Average time span for the 96 assemblages represented in the faunal series
11.3. Marine and glacial dates for Heinrich events and coeval cultural periods in western France

xix
LIST OF APPENDICES

1. MNI counts by species and level for mammal and fish remains.
 page 275
2. NISP and MNE counts for reindeer, bison, and horse elements.
 277
3. Distribution of faunal specimens by size class (in cm) in twelve décupages
 from Saint-Césaire.
 297
4. Mean fragment length of reindeer and bison bones in the stratigraphic
 sequence of Saint-Césaire.
 297
5. Bone surface preservation as a function of distance away from the cliff in a
 sample largely dominated by long bones.
 298
6. Incidence of cutmarks on long bone specimens by level and as a function of
 the degree of bone surface preservation.
 299
7. Percentages of cutmarks on reindeer long bones as a function of the degree
 of bone surface preservation at Saint-Césaire.
 299
8. Percentages of cutmarks on bison elements as a function of the degree of
 bone surface preservation at Saint-Césaire.
 300
9. Distribution of taxonomically identified bones by level and as a function of
 distance away from the cliff at Saint-Césaire.
 300
10. Change in skeletal representation in relation to the degree of identification
 at Saint-Césaire.
 301
11. Percentages of refitted fragments of reindeer long bones by size class
 (in mm²) at Saint-Césaire, irrespective of stratigraphic provenience.
 302
12. MNE-based counts of proximal epiphyses, distal epiphyses, and shafts at
 Saint-Césaire.
 302
13. Fetal age in days and corresponding diaphyseal length in the horse foreleg.
 303
14. Fetal age in days and corresponding diaphyseal length in the horse hindleg.
 305
15. Assemblages composing the time series, from earliest to latest.
 307
PROLOGUE

In 1999, I met with François Lévêque, then the Conservateur en Chef Honoraire du Patrimoine for the Poitou-Charentes area, in Poitiers, France, to discuss the possibility of studying Paleolithic materials from Saint-Césaire. Located in western France, this rockshelter has been the focus of relentless attention since 1979, when Lévêque’s team unexpectedly discovered Neandertal skeletal remains associated with Upper Paleolithic artifacts within one of its layers. Despite this attention and the publication in 1993 of a monograph concentrating on the site, a decade later little anthropological information was available on the Saint-Césaire faunal assemblages, except for the EJOP occupation. During our meeting, it was decided that I would conduct an economically oriented analysis of the faunas from this site. Two years later, in 2001, I left Ann Arbor, Michigan, for the Université de Bordeaux I (Talence, France) to initiate the study of the sequence. The first days were particularly long and stressful. Shortly after, however, I made several new friends. Suddenly, the days became bright and much too short! Two stays, totaling sixteen months, were needed to complete the investigation of the selected occupations.

The data that I accumulated during my stays in Talence formed the basis of a dissertation, which I defended in 2004. My dissertation looked at foraging strategies across the Middle to Upper Paleolithic transition in western France. In the years that followed, I began to enlarge the scope of my analysis by including materials from other sites and other regions of Europe in the hope of publishing a monograph. In the early months of 2008, I read a thought-provoking paper published in 2006 by Jim O’Connell contrasting the diet breadth of late Neandertals and early modern humans. After reading it, I decided to reframe my analysis to test the productive ideas presented in that paper. The following twelve chapters summarize these efforts.

Generally, collecting large amounts of information involves much cooperation and help. This book is no exception. I first want to thank Bob Whallon, my advisor while at Michigan, for his support and inspiration. This book owes much to him.

My gratitude also goes to Norman Clermont, now retired from the Université de Montréal, who guided me through the early literature on human evolution. Norman’s influence on this work is more profound than the preceding would suggest, however, as he introduced me, during my undergraduate years, to the exigencies of scientific thinking and data analysis. For this, I can never thank him enough.

I would also like to express my appreciation to John Speth, who spent countless hours discussing faunal problems with me. Many of the methods and ideas presented in this monograph were suggested or influenced by him.
Prologue

The analysis of the Saint-Césaire materials was realized within the framework of human behavioral ecology. This approach has much to offer to anthropologists because it can be used to make constructive predictions on change in foraging patterns. I am indebted to Cédric Beauval, Jack Broughton, Michael Cannon, Jean-Christophe Castel, David Cochard, Luc-Alain Giraldeau, Donald Grayson, Keith Hunley, Emily Jones, Lee Lyman, Natalie Munro, Filipa Naughton, John Speth, and Aaron Stutz for critical comments made on the various chapters that build on this approach. These comments contributed significantly to improve the final manuscript.

The examination of the data was enriched by several discussions. Among many others, I would especially like to acknowledge the input from the following people: Ofer Bar-Yosef, Cédric Beauval, Anna Belfer-Cohen, Jean-Guillaume Bordes, Jean-Philip Brugal, Jean-Christophe Castel, Sandrine Costamagno, Catherine Cretin, Françoise Delpech, Sylvain Ducasse, Jean-George Ferrié, Federica Fontana, Jean-Luc Guadelli, John Hoffecker, Liora Horwitz, Jacques Jaubert, François Lacrampe-Cuyaubère, Mathieu Langlais, Véronique Laroulandie, Françoise Lavaud-Girard, Olivier Le Gall, Lluis Lloveras Roca, Jean-Baptise Malley, Tiina Manne, Jean-Claude Marquet, Bruno Maurice, Liliane Meignen, Alexandre Michel, André Morala, Suzanne Münz, Margherita Mussi, Marco Peresani, Damien Pesesse, Rivka Rabinovich, William Rendu, Hélène Rougier, Alfred Sanchis Serra, Britt Starkovich, Antonio Tagliazozzo, Ursula Thun-Hohenstein, Paola Villa, and João Zilhão. These discussions were most appreciated and often permitted to improve the text. David Cochard created Figure 4.1, whereas François Lacrampe-Cuyaubère provided help for some of the figures presented in Chapters 9 through 11. The Saint-Césaire photos (Figures 4.2–4.7, 5.1, as well as the left photo in Figure 4.9) were all taken by François Lévêque.

The subjects treated in this book sometimes required the help of specialists from other disciplines. I am indebted to Frank Miller (Canadian Wildlife Service), Serge Couturier (Ministère des Ressources Naturelles et de la Faune, Québec), Eigil Reimers (University of Oslo), and Jim Schaefer (Trent University) for sharing information on caribou and reindeer biology. Caroline Pond from the Open University (England) kindly provided unpublished data on fat composition in various species. Francisco Palomares from the Estación Biológica de Doñana (Spain) shed light on various environmental factors that could have affected rabbit behavior in the past. Similarly, María Fernanda Sánchez Goñi, Stéphanie Desprat – both associated with the Centre National de la Recherche Scientifique (Bordeaux, France) – and Filipa Naughton (Departamento de Geologia Marinha, Laboratório Nacional de Energia e Geologia, Lisbon, Portugal) offered valuable assistance while I was analyzing paleoclimatic data. This book has also benefited from suggestions made by Michael Cannon, James Conolly, Aaron Stutz, and, more particularly, Robert Whallon with respect to statistical analyses.

Funding for this research was provided by the National Science Foundation, the Social Sciences and Humanities Research Council of Canada, and the Fonds de Recherche sur la Société et la Culture (province of Québec). A postdoctoral fellowship funded by the Centre Interuniversitaire d’Études sur les Lettres, les Arts et les Traditions (CELAT, Université Laval) allowed me to make progress on the manuscript. In France, the financial and logistical support received from the Service Régional de l’Archéologie, Poitou-Charente, via Jean-François Baratin and his successor, Jacques Buisson-Catil, deserves special mention here. The faunal assemblages from Saint-Césaire were mostly unwashed...
Prologue

and unlabeled when I received them. I would like to acknowledge the immense work by Nicolay Sirakov (son) and Tsenka Tsanova who prepared this material for study. Thanks also to Dominique Commelin, the librarian for the Economies, Sociétés et Environnements Préhistoriques (ESEP) research unit in Aix-en-Provence, for sending several papers published in poorly diffused journals. Jean-Claude Dubreuil and Françoise Coutton hosted me during my summer stays in France. Their support has been invaluable. Lastly, my extended appreciation goes to my former student Elspeth Ready for her thorough editorial work. Her patience, professionalism, and linguistic skills have been most appreciated.

Finally, in addition to my family, this book is dedicated to the memory of François Lévêque, who passed away while I was completing this book. His assistance, kindness, and amiability will never be forgotten.