Contents

Preface xiv
Acknowledgments xx

0 Introductory remarks 1
 0.1 Why \(p \)-adic differential equations? 1
 0.2 Zeta functions of varieties 3
 0.3 Zeta functions and \(p \)-adic differential equations 5
 0.4 A word of caution 7
Notes 8
Exercises 9

Part I Tools of \(p \)-adic Analysis

1 Norms on algebraic structures 13
 1.1 Norms on abelian groups 13
 1.2 Valuations and nonarchimedean norms 16
 1.3 Norms on modules 17
 1.4 Examples of nonarchimedean norms 26
 1.5 Spherical completeness 28
Notes 32
Exercises 34

2 Newton polygons 36
 2.1 Newton polygons 36
 2.2 Slope factorizations and a master factorization theorem 39
 2.3 Applications to nonarchimedean field theory 42
Notes 44
Exercises 45
Contents

Part I Ramification theory

3 Ramification theory

3.1 Defect 47
3.2 Unramified extensions 48
3.3 Tamely ramified extensions 50
3.4 The case of local fields 53
Notes 54
Exercises 55

Part II Differential Algebra

5 Formalism of differential algebra

5.1 Differential rings and differential modules 79
5.2 Differential modules and differential systems 82
5.3 Operations on differential modules 83
5.4 Cyclic vectors 87
5.5 Differential polynomials 88
5.6 Differential equations 90
5.7 Cyclic vectors: a mixed blessing 91
5.8 Taylor series 93
Notes 94
Exercises 95

6 Metric properties of differential modules

6.1 Spectral radii of bounded endomorphisms 97
6.2 Spectral radii of differential operators 99
6.3 A coordinate-free approach 106
6.4 Newton polygons for twisted polynomials 108
6.5 Twisted polynomials and spectral radii 109
6.6 The visible decomposition theorem 111
6.7 Matrices and the visible spectrum 113
6.8 A refined visible decomposition theorem 116
6.9 Changing the constant field 119
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>120</td>
</tr>
<tr>
<td>Exercises</td>
<td>121</td>
</tr>
<tr>
<td>7 Regular and irregular singularities</td>
<td>123</td>
</tr>
<tr>
<td>7.1 Irregularity</td>
<td>124</td>
</tr>
<tr>
<td>7.2 Exponents in the complex analytic setting</td>
<td>125</td>
</tr>
<tr>
<td>7.3 Formal solutions of regular differential equations</td>
<td>127</td>
</tr>
<tr>
<td>7.4 Index and irregularity</td>
<td>131</td>
</tr>
<tr>
<td>7.5 The Turrittin–Levelt–Hukuhara decomposition theorem</td>
<td>133</td>
</tr>
<tr>
<td>7.6 Asymptotic behavior</td>
<td>136</td>
</tr>
<tr>
<td>Notes</td>
<td>137</td>
</tr>
<tr>
<td>Exercises</td>
<td>139</td>
</tr>
<tr>
<td>Part III (p)-adic Differential Equations on Discs and Annuli</td>
<td></td>
</tr>
<tr>
<td>8 Rings of functions on discs and annuli</td>
<td>143</td>
</tr>
<tr>
<td>8.1 Power series on closed discs and annuli</td>
<td>144</td>
</tr>
<tr>
<td>8.2 Gauss norms and Newton polygons</td>
<td>146</td>
</tr>
<tr>
<td>8.3 Factorization results</td>
<td>148</td>
</tr>
<tr>
<td>8.4 Open discs and annuli</td>
<td>151</td>
</tr>
<tr>
<td>8.5 Analytic elements</td>
<td>152</td>
</tr>
<tr>
<td>8.6 More approximation arguments</td>
<td>156</td>
</tr>
<tr>
<td>Notes</td>
<td>158</td>
</tr>
<tr>
<td>Exercises</td>
<td>159</td>
</tr>
<tr>
<td>9 Radius and generic radius of convergence</td>
<td>161</td>
</tr>
<tr>
<td>9.1 Differential modules have no torsion</td>
<td>162</td>
</tr>
<tr>
<td>9.2 Antidifferentiation</td>
<td>163</td>
</tr>
<tr>
<td>9.3 Radius of convergence on a disc</td>
<td>164</td>
</tr>
<tr>
<td>9.4 Generic radius of convergence</td>
<td>165</td>
</tr>
<tr>
<td>9.5 Some examples in rank 1</td>
<td>168</td>
</tr>
<tr>
<td>9.6 Transfer theorems</td>
<td>168</td>
</tr>
<tr>
<td>9.7 Geometric interpretation</td>
<td>170</td>
</tr>
<tr>
<td>9.8 Subsidiary radii</td>
<td>172</td>
</tr>
<tr>
<td>9.9 Another example in rank 1</td>
<td>173</td>
</tr>
<tr>
<td>9.10 Comparison with the coordinate-free definition</td>
<td>174</td>
</tr>
<tr>
<td>9.11 An explicit convergence estimate</td>
<td>175</td>
</tr>
<tr>
<td>Notes</td>
<td>176</td>
</tr>
<tr>
<td>Exercises</td>
<td>177</td>
</tr>
<tr>
<td>10 Frobenius pullback and pushforward</td>
<td>179</td>
</tr>
<tr>
<td>10.1 Why Frobenius?</td>
<td>180</td>
</tr>
</tbody>
</table>
Contents

10.2 \(p \)-th powers and roots 180
10.3 Moving along Frobenius 182
10.4 Frobenius antecedents 184
10.5 Frobenius descendants and subsidiary radii 186
10.6 Decomposition by spectral radius 188
10.7 Integrality of the generic radius 192
10.8 Off-center Frobenius antecedents and descendants 193
Notes 194
Exercises 195

11 Variation of generic and subsidiary radii 196
11.1 Harmonicity of the valuation function 197
11.2 Variation of Newton polygons 198
11.3 Variation of subsidiary radii: statements 201
11.4 Convexity for the generic radius 203
11.5 Measuring small radii 204
11.6 Larger radii 205
11.7 Monotonicity 208
11.8 Radius versus generic radius 209
11.9 Subsidiary radii as radii of optimal convergence 210
Notes 212
Exercises 212

12 Decomposition by subsidiary radii 214
12.1 Metrical detection of units 215
12.2 Decomposition over a closed disc 216
12.3 Decomposition over a closed annulus 220
12.4 Partial decomposition over a closed disc or annulus 222
12.5 Decomposition over an open disc or annulus 224
12.6 Modules solvable at a boundary 225
12.7 Solvable modules of rank 1 226
12.8 Clean modules 227
Notes 231
Exercises 232

13 \(p \)-adic exponents 233
13.1 \(p \)-adic Liouville numbers 233
13.2 \(p \)-adic regular singularities 236
13.3 The Robba condition 237
13.4 Abstract \(p \)-adic exponents 238
13.5 Exponents for annuli 240
13.6 The \(p \)-adic Fuchs theorem for annuli 246
Contents

13.7 Transfer to a regular singularity 250
13.8 Liouville partitions 253
Notes 256
Exercises 257

Part IV Difference Algebra and Frobenius Modules

14 Formalism of difference algebra 261
14.1 Difference algebra 261
14.2 Twisted polynomials 264
14.3 Difference-closed fields 265
14.4 Difference algebra over a complete field 267
14.5 Hodge and Newton polygons 272
14.6 The Dieudonné–Manin classification theorem 274
Notes 277
Exercises 279

15 Frobenius modules 281
15.1 A multitude of rings 281
15.2 Substitutions and Frobenius lifts 284
15.3 Generic versus special Frobenius 286
15.4 A reverse filtration 289
15.5 Substitution maps in the Robba ring 292
Notes 292
Exercises 293

16 Frobenius modules over the Robba ring 294
16.1 Frobenius modules on open discs 294
16.2 More on the Robba ring 296
16.3 Pure difference modules 298
16.4 The slope filtration theorem 300
16.5 Harder–Narasimhan filtrations 302
16.6 Extended Robba rings 303
16.7 Proof of the slope filtration theorem 304
Notes 306
Exercises 308

Part V Frobenius Structures

17 Frobenius structures on differential modules 311
17.1 Frobenius structures 311
Table of Contents

17.2 Frobenius structures and the generic radius of convergence 314
17.3 Independence from the Frobenius lift 316
17.4 Slope filtrations and differential structures 318
17.5 Extension of Frobenius structures 319
17.6 Frobenius intertwiners 320
Notes 321
Exercises 322

18 Effective convergence bounds 323
18.1 A first bound 324
18.2 Effective bounds for solvable modules 324
18.3 Better bounds using Frobenius structures 328
18.4 Logarithmic growth 331
18.5 Nonzero exponents 334
Notes 335
Exercises 336

19 Galois representations and differential modules 338
19.1 Representations and differential modules 339
19.2 Finite representations and overconvergent differential modules 341
19.3 The unit-root p-adic local monodromy theorem 343
19.4 Ramification and differential slopes 346
Notes 348
Exercises 350

20 The p-adic local monodromy theorem 353
20.1 Statement of the theorem 353
20.2 An example 355
20.3 Descent of horizontal sections 356
20.4 Local duality 359
20.5 When the residue field is imperfect 360
20.6 Minimal slope quotients 362
Notes 363
Exercises 366

21 The p-adic local monodromy theorem: proof 367
21.1 Running hypotheses 367
21.2 Modules of differential slope 0 368
21.3 Modules of rank 1 370
Contents

21.4 Modules of rank prime to p 371
21.5 The general case 372
Notes 372
Exercises 373

22 p-adic monodromy without Frobenius structures 374
22.1 The Robba ring revisited 374
22.2 Modules of cyclic type 375
22.3 A Tannakian construction 378
22.4 Interlude on finite linear groups 382
22.5 Back to the Tannakian construction 384
22.6 Proof of the theorem 386
22.7 Relation to Frobenius structures 387
Notes 389
Exercises 390

Part VII Global theory

23 Banach rings and their spectra 393
23.1 Banach rings 393
23.2 The spectrum of a Banach ring 394
23.3 Topological properties 394
23.4 Complete residue fields 396
Notes 397
Exercises 397

24 The Berkovich projective line 399
24.1 Points 399
24.2 Classification of points 401
24.3 The domination relation 402
24.4 The tree structure 404
24.5 Skeleta 405
24.6 Harmonic and subharmonic functions 408
Notes 408
Exercises 409

25 Convergence polygons 411
25.1 The normalized radius of convergence 411
25.2 Normalized subsidiary radii and the convergence polygon 412
25.3 A constancy criterion for convergence polygons 413
25.4 Finiteness of the convergence polygon 415
25.5 Effect of singularities 417
Contents

25.6 Affinoid subspaces
25.7 Meromorphic differential equations
25.8 Open discs and annuli
Notes

26 **Index theorems**
26.1 The index of a differential module
26.2 More on affinoid subspaces of \mathbb{P}_K
26.3 The Laplacian of the convergence polygon
26.4 An index formula for algebraic differential equations
26.5 Local analysis on a disc
26.6 Local analysis on an annulus
26.7 Some nonarchimedean functional analysis
26.8 Plus and minus indices
26.9 Global analysis on a disc
26.10 A global index formula
Notes
Exercises

27 **Local constancy at type-4 points**
27.1 Geometry around a point of type 4
27.2 Local constancy in the visible range
27.3 Local monodromy at a point of type 4
27.4 End of the proof
Notes

Appendix A Picard–Fuchs modules
A.1 Picard–Fuchs modules
A.2 Frobenius structures on Picard–Fuchs modules
A.3 Relationship with zeta functions
Notes

Appendix B Rigid cohomology
B.1 Isocrystals on the affine line
B.2 Crystalline and rigid cohomology
B.3 Machine computations
Notes

Appendix C p-adic Hodge theory
C.1 A few rings
C.2 (φ, Γ)-modules
C.3 Galois cohomology
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.4</td>
<td>Differential equations from ((\varphi, \Gamma))-modules</td>
<td>465</td>
</tr>
<tr>
<td>C.5</td>
<td>Beyond Galois representations</td>
<td>467</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>467</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>469</td>
</tr>
<tr>
<td>Index of notation</td>
<td></td>
<td>489</td>
</tr>
<tr>
<td>Subject index</td>
<td></td>
<td>491</td>
</tr>
</tbody>
</table>