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Preface

This book is an outgrowth of a course taught by the author at MIT during fall

2007, on the subject of 𝑝-adic ordinary differential equations. The target audi-

ence was graduate students with some prior background in algebraic number

theory, including exposure to 𝑝-adic numbers, but not necessarily any back-

ground in 𝑝-adic analytic geometry (of either the Tate or Berkovich flavors).

The second edition was prepared during the 2020–2021 academic year.

Custom would dictate that this preface would continue with an explanation

of what 𝑝-adic differential equations are and why they matter. Since we have

included a whole chapter on this topic (Chapter 0), we instead devote this

preface to a discussion of the origin of the book, its general structure, and what

makes it different from previous books on the topic (including the first edition).

What was new in the first edition

The topic of 𝑝-adic differential equations has been treated in several previous

books. Two that we used in preparing the MIT course, and to which we make

frequent reference in the text, are those of Dwork, Gerotto, and Sullivan [149]

and of Christol [89]. Another existing book is that of Dwork [145], but it is not

a general treatise; rather, it focuses in detail on hypergeometric functions.

However, this book develops the theory of 𝑝-adic differential equations in a

manner that differs significantly from most prior literature. The key differences

include the following.

• We limit our use of cyclic vectors. This requires an initial investment in the

study of matrix inequalities (Chapter 4) and lattice approximation arguments

(especially Lemma 8.6.1), but pays off in the form of significantly stronger

results.

xiv
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Preface xv

• We introduce the notion of a Frobenius descendant (Chapter 10). This pro-

vides a complement to the older construction of Frobenius antecedents,

particularly in dealing with certain boundary cases where the antecedent

method does not apply.

As a result, we end up with some improvements of existing results, including

the following (some of which can also be found in Christol’s unpublished

manuscript [93]):

• We refine the Frobenius antecedent theorem of Christol and Dwork (Theo-

rem 10.4.2).

• We extend some results of Christol and Dwork, on the variation of the generic

radius of convergence, to subsidiary radii (Theorem 11.3.2).

• We upgrade Young’s geometric interpretation of subsidiary generic radii of

convergence beyond the range of applicability of Newton polygons (Theo-

rem 11.9.2).

• We quantify the Christol–Mebkhout decomposition theorem for differential

modules on an annulus in ways which are applicable even when the modules

are not solvable at a boundary (Theorems 12.2.2 and 12.3.1).

• We simplify the treatment of the theory of 𝑝-adic exponents (Theorems 13.5.5,

13.5.6, and 13.6.1).

• We sharpen the bound in the Christol transfer theorem to a disc containing a

regular singularity with exponents in Z𝑝 (Theorem 13.7.1).

• We generalize the Dieudonné–Manin classification theorem to difference

modules over a complete nonarchimedean field (Theorem 14.6.3).

• We improve upon the Christol–Dwork–Robba effective bounds for solutions

of 𝑝-adic differential equations (Theorem 18.2.1, Theorem 18.5.2) and some

related bounds that apply in the presence of a Frobenius structure (Theo-

rem 18.3.3). The latter can be used to recover a theorem of Chiarellotto and

Tsuzuki concerning logarithmic growth of solutions of differential equations

with Frobenius structure (Theorem 18.4.7).

• We state a relative version of the 𝑝-adic local monodromy theorem, formerly

Crew’s conjecture (Theorem 20.1.4). We describe in detail how it may be

derived either from the 𝑝-adic index theory of Christol–Mebkhout, which we

treat in detail in Chapter 13, or from the slope theory for Frobenius modules

of Kedlaya, which we only sketch in Chapter 16.

Some of the new results are relevant in theory (in the study of higher-dimensional

𝑝-adic differential equations, largely in the context of the semistable reduction

problem for overconvergent 𝐹-isocrystals, for which see [249] and [248]) or in
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xvi Preface

practice (in the explicit computation of solutions of 𝑝-adic differential equa-

tions, e.g., for machine computation of zeta functions of particular varieties,

for which see [244]). There is also some relevance entirely outside of number

theory, to the study of flat connections on complex analytic varieties (see [250]).

Although some of the intended applications involve higher-dimensional 𝑝-

adic analytic spaces, this book treats exclusively 𝑝-adic ordinary differential

equations. In joint work with Liang Xiao [271], we have developed some

extensions to higher-dimensional spaces.

What’s new in the second edition

The second edition incorporates corrections to various errors in the original

text. It also includes some new material, largely concerning developments that

emerged after the publication of the first edition. We single out a few highlights:

• Many old and new references have been added to the chapter notes.

• In Chapter 7, we have added a discussion of the index of a meromorphic

differential module (Section 7.4) and an example of the Stokes phenomenon

(Section 7.6).

• In Chapter 12, we have expanded the discussion of clean modules and spectral

decompositions (Section 12.8).

• In Chapter 13, we have eliminated the forward reference from Lemma 13.5.4

to Corollary 18.2.5 by providing an alternate proof of the former, corrected

the proof of Theorem 13.6.1, and added a discussion of Liouville partitions

(Section 13.8).

• In Chapter 18, we have expanded the discussion of logarithmic growth to

include results of André and Ohkubo (Section 18.4), and corrected the state-

ment and proof of Theorem 18.5.2.

• We have created a new Part VI consisting of Chapters 20 and 21 plus one

new chapter (Chapter 22).

• In Chapter 20, we have added a theorem of Tsuzuki on minimal slope quo-

tients (Theorem 20.6.7).

• We have added Chapter 22 to present a form of the 𝑝-adic local monodromy

theorem that holds in the absence of a Frobenius structure. This includes the

definition and analysis of modules of cyclic type (Section 22.2).

• Chapters 22, 23, and 24 from the first edition appear as Appendices A, B,

and C in this edition.

• Part VII is entirely new to the second edition. See below.
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Preface xvii

Structure of the book

Each individual chapter of this book exhibits the following basic structure.

Before the body of the chapter, we provide a brief introduction explaining what

is to be discussed and often setting some running notations or hypotheses. After

the body of the chapter, we include a section of afternotes, in which we provide

detailed references for results in that chapter, fill in historical details, and add

additional comments. (This practice is modeled on [172], although we cannot

pretend to the level of detail achieved therein.) Note that we have a habit of

attributing to various authors slightly stronger versions of their theorems than

the ones they originally stated; to avoid complicating the discussion in the text,

we resolve these misattributions in the afternotes instead. (See also the thematic

bibliography of [259] for additional references, albeit without much context.)

At the end of the chapter, we typically include a few exercises; a fair number of

these request proofs of results which are stated and used in the text, but whose

proofs pose no unusual difficulties.

The chapters themselves are grouped into several parts, which we now de-

scribe briefly. (Chapter 0, being introductory, does not fit into this grouping.)

Part I is preliminary, collecting some basic tools of 𝑝-adic analysis. How-

ever, it also includes some facts of matrix analysis (the variation of numerical

invariants attached to matrices as a function of the matrix entries) which may

not be familiar to the typical reader.

Part II introduces some formalism of differential algebra, such as differential

rings and modules, twisted polynomials, and cyclic vectors, and applies these

to fields equipped with a nonarchimedean norm.

Part III begins the study of 𝑝-adic differential equations in earnest, developing

some basic theory for differential modules on rings and annuli, including the

Christol–Dwork theory of variation of the generic radius of convergence, and

the Christol–Mebkhout decomposition theory. We also include a treatment of

𝑝-adic exponents, culminating in the Christol–Mebkhout structure theorem for

𝑝-adic differential modules on an annulus satisfying the Robba condition (i.e.,

having intrinsic generic radius of convergence everywhere equal to 1).

Part IV introduces some formalism of difference algebra and presents (with-

out full proofs) the theory of slope filtrations for Frobenius modules over the

Robba ring.

Part V introduces the concept of a Frobenius structure on a 𝑝-adic differential

module. We also discuss effective convergence bounds for solutions of 𝑝-adic

differential equations.

Part VI presents the 𝑝-adic local monodromy theorem (formerly Crew’s

conjecture) and the proof techniques using either 𝑝-adic exponents or Frobenius
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slope filtrations. We also introduce a new approach that gives a version of the

theorem that applies in the absence of a Frobenius structure.

Part VII revisits the theory of convergence of solutions of 𝑝-adic differ-

ential equations from a more global viewpoint. We introduce the Berkovich

analytification of the projective line, define and study convergence polygons as

functions on the projective line, and state a global index theorem in terms of

the Laplacian of the convergence polygon.

The appendices consist of a series of brief discussions of several areas

of application of the theory of 𝑝-adic differential equations. While they are

formatted like chapters (without exercises), their textual style is somewhat more

didactic and much less formal than in the main text (excluding Chapter 0); they

are meant primarily as suggestions for further reading.

Prerequisites

As noted above, we have not assumed that the reader is familiar with rigid

analytic geometry, and so have phrased all statements more concretely in terms

of rings and modules. Although we expect that the typical reader has at least

a passing familiarity with 𝑝-adic numbers (e.g., at the level of Gouvêa’s text

[178]), for completeness we begin with a rapid development of the algebra of

complete rings and fields. This development, when read on its own, may appear

somewhat idiosyncratic; its design is justified by the reuse of some material in

later chapters.

We would ultimately like to think that the background needed is that of a two-

semester undergraduate abstract algebra sequence. However, this may be a bit

too optimistic; some basic notions from commutative algebra do occasionally

intervene, including flat modules, exact sequences, and the snake lemma. It may

be helpful to have a well-indexed text within arm’s reach; we like Eisenbud’s

book [154], but the far slimmer book by Atiyah and Macdonald [24] should

also suffice. (At the opposite extreme, we are also partial to the massive Stacks

Project [378].)

Leitfaden

Figure 0.1 indicates logical dependencies among the chapters, with each part

of the book represented in a single row. To keep the diagram manageable, we

grouped together some chapters (1–3 and 9–12), and omitted Chapter 0 and the

appendices.
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Figure 0.1 Diagram of logical dependencies among chapters
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