CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 198

Editorial Board

J. BERTOIN, B. BOLLOBÁS, W. FULTON, B. KRA, I. MOERDIJK, C. RAEGER, P. SARNAK, B. SIMON, B. TOTARO

p-ADIC DIFFERENTIAL EQUATIONS

Now in its second edition, this volume provides a uniquely detailed study of p-adic differential equations. Assuming only a graduate-level background in number theory, the text builds the theory from first principles all the way to the frontiers of current research, highlighting analogies and links with the classical theory of ordinary differential equations. The author includes many original results which play a key role in the study of p-adic geometry, crystalline cohomology, p-adic Hodge theory, perfectoid spaces, and algorithms for L-functions of arithmetic varieties. This updated edition contains five new chapters, which revisit the theory of convergence of solutions of p-adic differential equations from a more global viewpoint, introducing the Berkovich analytification of the projective line, defining convergence polygons as functions on the projective line, and deriving a global index theorem in terms of the Laplacian of the convergence polygon.

Kiran S. Kedlaya is the Stefan E. Warschawski Professor of Mathematics at University of California San Diego. He has published over 100 research articles in number theory, algebraic geometry, and theoretical computer science as well as several books, including two on the Putnam competition. He has received a Presidential Early Career Award, a Sloan Fellowship, and a Guggenheim Fellowship, and been named an ICM invited speaker and a Fellow of the American Mathematical Society.

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board

J. Bertoin, B. Bollobás, W. Fulton, B. Kra, I. Moerdijk, C. Praeger, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing, visit www.cambridge.org/mathematics.

Already Published

- 159 H. Matsumoto & S. Taniguchi Stochastic Analysis 160 A. Borodin & G. Olshanski Representations of the Infinite Symmetric Group 161 P. Webb Finite Group Representations for the Pure Mathematician 162 C. J. Bishop & Y. Peres Fractals in Probability and Analysis 163 A. Bovier Gaussian Processes on Trees 164 P. Schneider Galois Representations and (φ, Γ) -Modules 165 P. Gille & T. Szamuely Central Simple Algebras and Galois Cohomology (2nd Edition) 166 D. Li & H. Queffelec Introduction to Banach Spaces, I 167 D. Li & H. Queffelec Introduction to Banach Spaces, II 168 J. Carlson, S. Müller-Stach & C. Peters Period Mappings and Period Domains (2nd Edition) 169 J. M. Landsberg Geometry and Complexity Theory 170 J. S. Milne Algebraic Groups 171 J. Gough & J. Kupsch Quantum Fields and Processes 172 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Discrete Harmonic Analysis 173 P. Garrett Modern Analysis of Automorphic Forms by Example, I 174 P. Garrett Modern Analysis of Automorphic Forms by Example, II 175 G. Navarro Character Theory and the McKay Conjecture 176 P. Fleig, H. P. A. Gustafsson, A. Kleinschmidt & D. Persson Eisenstein Series and Automorphic Representations 177 E. Peterson Formal Geometry and Bordism Operators 178 A. Ogus Lectures on Logarithmic Algebraic Geometry 179 N. Nikolski Hardy Spaces 180 D.-C. Cisinski Higher Categories and Homotopical Algebra 181 A. Agrachev, D. Barilari & U. Boscain A Comprehensive Introduction to Sub-Riemannian Geometry 182 N. Nikolski Toeplitz Matrices and Operators 183 A. Yekutieli Derived Categories 184 C. Demeter Fourier Restriction, Decoupling and Applications 185 D. Barnes & C. Roitzheim Foundations of Stable Homotopy Theory 186 V. Vasyunin & A. Volberg The Bellman Function Technique in Harmonic Analysis 187 M. Geck & G. Malle The Character Theory of Finite Groups of Lie Type 188 B. Richter Category Theory for Homotopy Theory 189 R. Willett & G. Yu Higher Index Theory 190 A. Bobrowski Generators of Markov Chains 191 D. Cao, S. Peng & S. Yan Singularly Perturbed Methods for Nonlinear Elliptic Problems 192 E. Kowalski An Introduction to Probabilistic Number Theory 193 V. Gorin Lectures on Random Lozenge Tilings 194 E. Riehl & D. Verity Elements of ∞-Category Theory 195 H. Krause Homological Theory of Representations 196 F. Durand & D. Perrin Dimension Groups and Dynamical Systems 197 A. Sheffer Polynomial Methods and Incidence Theory
- 198 T. Dobson, A. Malnič & D. Marušič Symmetry in Graphs

p-adic Differential Equations

Second Edition

KIRAN S. KEDLAYA University of California San Diego

© in this web service Cambridge University Press & Assessment

www.cambridge.org

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009123341 DOI: 10.1017/9781009127684

© K. S. Kedlaya 2010, 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2010 Second edition 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-12334-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface Acknowledgments		<i>page</i> xiv xx
0	Introductory remarks		1
	0.1	Why <i>p</i> -adic differential equations?	1
	0.2	Zeta functions of varieties	3
	0.3	Zeta functions and <i>p</i> -adic differential equations	5
	0.4	A word of caution	7
	Notes		8
	Exer	cises	9

Part I Tools of *p*-adic Analysis

1	Nori	ns on algebraic structures	13
	1.1	Norms on abelian groups	13
	1.2	Valuations and nonarchimedean norms	16
	1.3	Norms on modules	17
	1.4	Examples of nonarchimedean norms	26
	1.5	Spherical completeness	28
	Notes		32
	Exer	cises	34
2	New	ton polygons	36
	2.1	Newton polygons	36
	2.2	Slope factorizations and a master factorization theorem	39
	2.3	Applications to nonarchimedean field theory	42
	Note	S	44
	Exer	cises	45

vi		Contents	
3	Ram	ification theory	46
	3.1	Defect	47
	3.2	Unramified extensions	48
	3.3	Tamely ramified extensions	50
	3.4	The case of local fields	53
	Note	S	54
	Exer	cises	55
4	Mati	rix analysis	56
	4.1	Singular values and eigenvalues (archimedean case)	57
	4.2	Perturbations (archimedean case)	61
	4.3	Singular values and eigenvalues (nonarchimedean case)	63
	4.4	Perturbations (nonarchimedean case)	68
	4.5	Horn's inequalities	72
	Note	S	73
	Exer	cises	75

Part II Differential Algebra

5	Form	nalism of differential algebra	79
	5.1	Differential rings and differential modules	79
	5.2	Differential modules and differential systems	82
	5.3	Operations on differential modules	83
	5.4	Cyclic vectors	87
	5.5	Differential polynomials	88
	5.6	Differential equations	90
	5.7	Cyclic vectors: a mixed blessing	91
	5.8	Taylor series	93
	Note	2S	94
	Exer	cises	95
6	Met	Metric properties of differential modules	
	6.1	Spectral radii of bounded endomorphisms	97
	6.2	Spectral radii of differential operators	99
	6.3	A coordinate-free approach	106
	6.4	Newton polygons for twisted polynomials	108
	6.5	Twisted polynomials and spectral radii	109
	6.6	The visible decomposition theorem	111
	6.7	Matrices and the visible spectrum	113
	6.8	A refined visible decomposition theorem	116
	6.9	Changing the constant field	119

7

	Contents	vii
Notes		120
Exerc	ises	121
Regul	ar and irregular singularities	123
7.1	Irregularity	124
7.2	Exponents in the complex analytic setting	125
7.3	Formal solutions of regular differential equations	127
7.4	Index and irregularity	131
7.5	The Turrittin–Levelt–Hukuhara decomposition theorem	133
7.6	Asymptotic behavior	136
Notes		137
Exerc	ises	139

	Part	III <i>p</i> -adic Differential Equations on Discs and An	nuli
8	Ring	s of functions on discs and annuli	143
	8.1	Power series on closed discs and annuli	144
	8.2	Gauss norms and Newton polygons	146
	8.3	Factorization results	148
	8.4	Open discs and annuli	151
	8.5	Analytic elements	152
	8.6	More approximation arguments	156
	Notes	5	158
	Exerc	cises	159
9	Radius and generic radius of convergence		
	9.1	Differential modules have no torsion	162
	9.2	Antidifferentiation	163
	9.3	Radius of convergence on a disc	164
	9.4	Generic radius of convergence	165
	9.5	Some examples in rank 1	168
	9.6	Transfer theorems	168
	9.7	Geometric interpretation	170
	9.8	Subsidiary radii	172
	9.9	Another example in rank 1	173
	9.10	Comparison with the coordinate-free definition	174
	9.11	An explicit convergence estimate	175
	Notes	5	176
	Exerc	vises	177
10	Frob	enius pullback and pushforward	179

Why Frobenius?

10.1

180

viii		Contents	
	10.2	<i>p</i> -th powers and roots	180
	10.3	· ·	182
	10.4	Frobenius antecedents	184
	10.5	Frobenius descendants and subsidiary radii	186
	10.6	Decomposition by spectral radius	188
	10.7	Integrality of the generic radius	192
	10.8	Off-center Frobenius antecedents and descendants	193
	Notes	3	194
	Exerc	cises	195
11	Varia	ation of generic and subsidiary radii	196
	11.1	Harmonicity of the valuation function	197
	11.2	Variation of Newton polygons	198
	11.3	Variation of subsidiary radii: statements	201
	11.4	Convexity for the generic radius	203
	11.5	Measuring small radii	204
	11.6	Larger radii	205
	11.7		208
	11.8	Radius versus generic radius	209
	11.9	Subsidiary radii as radii of optimal convergence	210
	Notes	5	212
	Exerc	vises	212
12	Deco	mposition by subsidiary radii	214
	12.1	Metrical detection of units	215
	12.2	Decomposition over a closed disc	216
	12.3	Decomposition over a closed annulus	220
	12.4	Partial decomposition over a closed disc or annulus	222
	12.5	I I I I I I I I I I I I I I I I I I I	224
	12.6		225
	12.7		226
	12.8	Clean modules	227
	Notes	-	231
	Exerc	cises	232
13	p-ad	ic exponents	233
	13.1	<i>p</i> -adic Liouville numbers	233
	13.2	<i>p</i> -adic regular singularities	236
	13.3	The Robba condition	237
	13.4	Abstract <i>p</i> -adic exponents	238
	13.5	Exponents for annuli	240
	13.6	The <i>p</i> -adic Fuchs theorem for annuli	246

Cambridge University Press & Assessment
978-1-009-12334-1 — p-adic Differential Equations
Kiran S. Kedlaya
Frontmatter
More Information

		Contents	ix
	13.7	Transfer to a regular singularity	250
	13.8	Liouville partitions	253
	Notes	5	256
	Exerc	cises	257
	Part	IV Difference Algebra and Frobenius Modules	
14		6	261
14	гоги 14.1	nalism of difference algebra	261 261
	14.1	Difference algebra Twisted polynomials	261
	14.2	1 5	204 265
	14.5		203 267
	14.4	Hodge and Newton polygons	207
	14.5	The Dieudonné–Manin classification theorem	272
	Notes		274
	Exerc		277
15		enius modules	281
	15.1	A multitude of rings	281
	15.2		284
	15.3	1	286
	15.4		289
	15.5		292
	Notes	-	292
	Exerc	cises	293
16	Frob	enius modules over the Robba ring	294
	16.1	Frobenius modules on open discs	294
	16.2	More on the Robba ring	296
	16.3	Pure difference modules	298
	16.4	The slope filtration theorem	300
	16.5	Harder-Narasimhan filtrations	302
	16.6	Extended Robba rings	303
	16.7	Proof of the slope filtration theorem	304
	Notes		306
	Exerc	vises	308

Part V Frobenius Structures

17	Frobenius structures on differential modules		311
	17.1	Frobenius structures	311

> Contents х 17.2 Frobenius structures and the generic radius of convergence 314 17.3 Independence from the Frobenius lift 316 17.4 Slope filtrations and differential structures 318 17.5 Extension of Frobenius structures 319 Frobenius intertwiners 17.6 320 Notes 321 322 Exercises 323 18 Effective convergence bounds 18.1 A first bound 324 18.2 Effective bounds for solvable modules 324 18.3 Better bounds using Frobenius structures 328 18.4 Logarithmic growth 331 18.5 Nonzero exponents 334 Notes 335 Exercises 336 19 Galois representations and differential modules 338 19.1 Representations and differential modules 339 19.2 Finite representations and overconvergent differential modules 341 343 19.3 The unit-root *p*-adic local monodromy theorem Ramification and differential slopes 19.4 346 Notes 348 Exercises 350 Part VI The *p*-adic local monodromy theorem 20 The *p*-adic local monodromy theorem 353 20.1 Statement of the theorem 353 20.2 355 An example

	20.3	Descent of horizontal sections	356
	20.4	Local duality	359
	20.5	When the residue field is imperfect	360
	20.6	Minimal slope quotients	362
	Notes	8	363
	Exerc	cises	366
21	The	p-adic local monodromy theorem: proof	367
	21.1	Running hypotheses	367
	21.2	Modules of differential slope 0	368
	21.3	Modules of rank 1	370

		Contents	xi
	21.4	Modules of rank prime to p	371
	21.5	The general case	372
	Notes	5	372
	Exerc	ises	373
22	p-adi	c monodromy without Frobenius structures	374
	22.1	The Robba ring revisited	374
	22.2	Modules of cyclic type	375
	22.3	A Tannakian construction	378
	22.4	Interlude on finite linear groups	382
	22.5	Back to the Tannakian construction	384
	22.6	Proof of the theorem	386
	22.7	Relation to Frobenius structures	387
	Notes	5	389
	Exerc	ises	390

Part VII Global theory

23	Bana	ch rings and their spectra	393
	23.1	Banach rings	393
	23.2	The spectrum of a Banach ring	394
	23.3	Topological properties	394
	23.4	Complete residue fields	396
	Notes	5	397
	Exercises		397
24	The Berkovich projective line		399
	24.1	Points	399
	24.2	Classification of points	401
	24.3	The domination relation	402
	24.4	The tree structure	404
	24.5	Skeleta	405
	24.6	Harmonic and subharmonic functions	408
	Notes	6	408
	Exercises		409
25	Convergence polygons		
	25.1	The normalized radius of convergence	411
	25.2	Normalized subsidiary radii and the convergence polygon	412
	25.3	A constancy criterion for convergence polygons	413
	25.4	Finiteness of the convergence polygon	415
	25.5	Effect of singularities	417

Cambridge University Press & Assessment
978-1-009-12334-1 — p-adic Differential Equations
Kiran S. Kedlaya
Frontmatter
More Information

xii		Contents	
	25.6	Affinoid subspaces	418
	25.7	Meromorphic differential equations	419
	25.8	Open discs and annuli	420
	Notes	-	421
26	Index	theorems	423
	26.1	The index of a differential module	423
	26.2	More on affinoid subspaces of \mathbb{P}_K	424
	26.3	The Laplacian of the convergence polygon	425
	26.4	An index formula for algebraic differential equations	427
	26.5	Local analysis on a disc	429
	26.6	Local analysis on an annulus	431
	26.7	Some nonarchimedean functional analysis	433
	26.8	Plus and minus indices	436
	26.9	Global analysis on a disc	438
	26.10	A global index formula	439
	Notes		440
	Exerc	ises	441
27	Local constancy at type-4 points		
	27.1	Geometry around a point of type 4	442
	27.2	Local constancy in the visible range	443
	27.3	Local monodromy at a point of type 4	444
	27.4	End of the proof	446
	Notes		446
Appendix A		Picard–Fuchs modules	449
	A.1	Picard–Fuchs modules	449
	A.2	Frobenius structures on Picard–Fuchs modules	450
	A.3	Relationship with zeta functions	451
	Notes		452
Appe	ndix B	Rigid cohomology	454
	B .1	Isocrystals on the affine line	454
	B.2	Crystalline and rigid cohomology	456
	B.3	Machine computations	457
	Notes		458
Appendix C		<i>p</i> -adic Hodge theory	460
	C.1	A few rings	460
	C.2	(φ, Γ) -modules	462

C.3 Galois cohomology 464

	Contents	xiii
C.4	Differential equations from (φ, Γ) -modules	465
C.5	Beyond Galois representations	467
Notes		467
References		469
Index of notation		489
Subject index		491

Preface

This book is an outgrowth of a course taught by the author at MIT during fall 2007, on the subject of *p*-adic ordinary differential equations. The target audience was graduate students with some prior background in algebraic number theory, including exposure to *p*-adic numbers, but not necessarily any background in *p*-adic analytic geometry (of either the Tate or Berkovich flavors). The second edition was prepared during the 2020–2021 academic year.

Custom would dictate that this preface would continue with an explanation of what *p*-adic differential equations are and why they matter. Since we have included a whole chapter on this topic (Chapter 0), we instead devote this preface to a discussion of the origin of the book, its general structure, and what makes it different from previous books on the topic (including the first edition).

What was new in the first edition

The topic of p-adic differential equations has been treated in several previous books. Two that we used in preparing the MIT course, and to which we make frequent reference in the text, are those of Dwork, Gerotto, and Sullivan [149] and of Christol [89]. Another existing book is that of Dwork [145], but it is not a general treatise; rather, it focuses in detail on hypergeometric functions.

However, this book develops the theory of p-adic differential equations in a manner that differs significantly from most prior literature. The key differences include the following.

• We limit our use of cyclic vectors. This requires an initial investment in the study of matrix inequalities (Chapter 4) and lattice approximation arguments (especially Lemma 8.6.1), but pays off in the form of significantly stronger results.

Preface

• We introduce the notion of a Frobenius descendant (Chapter 10). This provides a complement to the older construction of Frobenius antecedents, particularly in dealing with certain boundary cases where the antecedent method does not apply.

As a result, we end up with some improvements of existing results, including the following (some of which can also be found in Christol's unpublished manuscript [93]):

- We refine the Frobenius antecedent theorem of Christol and Dwork (Theorem 10.4.2).
- We extend some results of Christol and Dwork, on the variation of the generic radius of convergence, to subsidiary radii (Theorem 11.3.2).
- We upgrade Young's geometric interpretation of subsidiary generic radii of convergence beyond the range of applicability of Newton polygons (Theorem 11.9.2).
- We quantify the Christol–Mebkhout decomposition theorem for differential modules on an annulus in ways which are applicable even when the modules are not solvable at a boundary (Theorems 12.2.2 and 12.3.1).
- We simplify the treatment of the theory of *p*-adic exponents (Theorems 13.5.5, 13.5.6, and 13.6.1).
- We sharpen the bound in the Christol transfer theorem to a disc containing a regular singularity with exponents in \mathbb{Z}_p (Theorem 13.7.1).
- We generalize the Dieudonné–Manin classification theorem to difference modules over a complete nonarchimedean field (Theorem 14.6.3).
- We improve upon the Christol–Dwork–Robba effective bounds for solutions of *p*-adic differential equations (Theorem 18.2.1, Theorem 18.5.2) and some related bounds that apply in the presence of a Frobenius structure (Theorem 18.3.3). The latter can be used to recover a theorem of Chiarellotto and Tsuzuki concerning logarithmic growth of solutions of differential equations with Frobenius structure (Theorem 18.4.7).
- We state a relative version of the *p*-adic local monodromy theorem, formerly Crew's conjecture (Theorem 20.1.4). We describe in detail how it may be derived either from the *p*-adic index theory of Christol–Mebkhout, which we treat in detail in Chapter 13, or from the slope theory for Frobenius modules of Kedlaya, which we only sketch in Chapter 16.

Some of the new results are relevant in theory (in the study of higher-dimensional *p*-adic differential equations, largely in the context of the *semistable reduction problem* for overconvergent *F*-isocrystals, for which see [249] and [248]) or in

xv

xvi

Preface

practice (in the explicit computation of solutions of p-adic differential equations, e.g., for machine computation of zeta functions of particular varieties, for which see [244]). There is also some relevance entirely outside of number theory, to the study of flat connections on complex analytic varieties (see [250]).

Although some of the intended applications involve higher-dimensional *p*-adic analytic spaces, this book treats exclusively *p*-adic *ordinary* differential equations. In joint work with Liang Xiao [271], we have developed some extensions to higher-dimensional spaces.

What's new in the second edition

The second edition incorporates corrections to various errors in the original text. It also includes some new material, largely concerning developments that emerged after the publication of the first edition. We single out a few highlights:

- Many old and new references have been added to the chapter notes.
- In Chapter 7, we have added a discussion of the index of a meromorphic differential module (Section 7.4) and an example of the Stokes phenomenon (Section 7.6).
- In Chapter 12, we have expanded the discussion of clean modules and spectral decompositions (Section 12.8).
- In Chapter 13, we have eliminated the forward reference from Lemma 13.5.4 to Corollary 18.2.5 by providing an alternate proof of the former, corrected the proof of Theorem 13.6.1, and added a discussion of Liouville partitions (Section 13.8).
- In Chapter 18, we have expanded the discussion of logarithmic growth to include results of André and Ohkubo (Section 18.4), and corrected the statement and proof of Theorem 18.5.2.
- We have created a new Part VI consisting of Chapters 20 and 21 plus one new chapter (Chapter 22).
- In Chapter 20, we have added a theorem of Tsuzuki on minimal slope quotients (Theorem 20.6.7).
- We have added Chapter 22 to present a form of the *p*-adic local monodromy theorem that holds in the absence of a Frobenius structure. This includes the definition and analysis of modules of cyclic type (Section 22.2).
- Chapters 22, 23, and 24 from the first edition appear as Appendices A, B, and C in this edition.
- Part VII is entirely new to the second edition. See below.

Preface

xvii

Structure of the book

Each individual chapter of this book exhibits the following basic structure. Before the body of the chapter, we provide a brief introduction explaining what is to be discussed and often setting some running notations or hypotheses. After the body of the chapter, we include a section of afternotes, in which we provide detailed references for results in that chapter, fill in historical details, and add additional comments. (This practice is modeled on [172], although we cannot pretend to the level of detail achieved therein.) Note that we have a habit of attributing to various authors slightly stronger versions of their theorems than the ones they originally stated; to avoid complicating the discussion in the text, we resolve these misattributions in the afternotes instead. (See also the thematic bibliography of [259] for additional references, albeit without much context.) At the end of the chapter, we typically include a few exercises; a fair number of these request proofs of results which are stated and used in the text, but whose proofs pose no unusual difficulties.

The chapters themselves are grouped into several parts, which we now describe briefly. (Chapter 0, being introductory, does not fit into this grouping.)

Part I is preliminary, collecting some basic tools of *p*-adic analysis. However, it also includes some facts of matrix analysis (the variation of numerical invariants attached to matrices as a function of the matrix entries) which may not be familiar to the typical reader.

Part II introduces some formalism of differential algebra, such as differential rings and modules, twisted polynomials, and cyclic vectors, and applies these to fields equipped with a nonarchimedean norm.

Part III begins the study of p-adic differential equations in earnest, developing some basic theory for differential modules on rings and annuli, including the Christol–Dwork theory of variation of the generic radius of convergence, and the Christol–Mebkhout decomposition theory. We also include a treatment of p-adic exponents, culminating in the Christol–Mebkhout structure theorem for p-adic differential modules on an annulus satisfying the Robba condition (i.e., having intrinsic generic radius of convergence everywhere equal to 1).

Part IV introduces some formalism of difference algebra and presents (without full proofs) the theory of slope filtrations for Frobenius modules over the Robba ring.

Part V introduces the concept of a Frobenius structure on a *p*-adic differential module. We also discuss effective convergence bounds for solutions of *p*-adic differential equations.

Part VI presents the p-adic local monodromy theorem (formerly Crew's conjecture) and the proof techniques using either p-adic exponents or Frobenius

xviii

Preface

slope filtrations. We also introduce a new approach that gives a version of the theorem that applies in the absence of a Frobenius structure.

Part VII revisits the theory of convergence of solutions of p-adic differential equations from a more global viewpoint. We introduce the Berkovich analytification of the projective line, define and study convergence polygons as functions on the projective line, and state a global index theorem in terms of the Laplacian of the convergence polygon.

The appendices consist of a series of brief discussions of several areas of application of the theory of p-adic differential equations. While they are formatted like chapters (without exercises), their textual style is somewhat more didactic and much less formal than in the main text (excluding Chapter 0); they are meant primarily as suggestions for further reading.

Prerequisites

As noted above, we have not assumed that the reader is familiar with rigid analytic geometry, and so have phrased all statements more concretely in terms of rings and modules. Although we expect that the typical reader has at least a passing familiarity with *p*-adic numbers (e.g., at the level of Gouvêa's text [178]), for completeness we begin with a rapid development of the algebra of complete rings and fields. This development, when read on its own, may appear somewhat idiosyncratic; its design is justified by the reuse of some material in later chapters.

We would ultimately like to think that the background needed is that of a twosemester undergraduate abstract algebra sequence. However, this may be a bit too optimistic; some basic notions from commutative algebra do occasionally intervene, including flat modules, exact sequences, and the snake lemma. It may be helpful to have a well-indexed text within arm's reach; we like Eisenbud's book [154], but the far slimmer book by Atiyah and Macdonald [24] should also suffice. (At the opposite extreme, we are also partial to the massive Stacks Project [378].)

Leitfaden

Figure 0.1 indicates logical dependencies among the chapters, with each part of the book represented in a single row. To keep the diagram manageable, we grouped together some chapters (1-3 and 9-12), and omitted Chapter 0 and the appendices.

xix

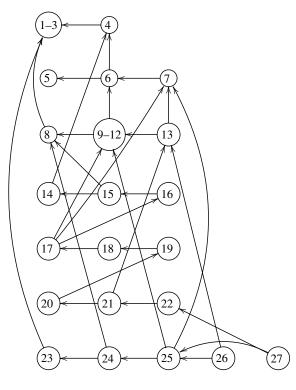


Figure 0.1 Diagram of logical dependencies among chapters

Acknowledgments

We thank the participants of the MIT course 18.787 (Topics in Number Theory, fall 2007) for numerous comments on the lecture notes which ultimately became this book. Particular thanks are due to Ben Brubaker and David Speyer for giving guest lectures, and to Chris Davis, Hansheng Diao, David Harvey, Raju Krishnamoorthy, Ruochuan Liu, Eric Rosen, and especially Liang Xiao for providing feedback. Additional feedback on drafts of the first edition was provided by Francesco Baldassarri, Laurent Berger, Bruno Chiarellotto, Gilles Christol, Ricardo García López, Tim Gowers, and Andrea Pulita. Feedback on the published first edition was provided by Francesco Baldassarri, Joshua Ciappara, Michel Matignon, Grant Molnar, Takahiro Nakagawa, Shun Ohkubo, David Savitt, Atsushi Shiho, Junecue Suh, Peiduo Wang, and Shuyang Ye.

During the preparation of the course and of the first edition, the author was supported by a National Science Foundation CAREER grant (DMS-0545904), a Sloan Research Fellowship, MIT's NEC Research Support Fund, and the MIT Cecil and Ida Green Career Development Professorship. During the preparation of the second edition, the author was supported by NSF (DMS-1802161, DMS-2053473) and the Stefan E. Warschawski Professorship at UC San Diego.