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1 Introduction

This is rocket science but you don’t have

to be a rocket scientist to use it.

Jack Noonan, CEO of SPSS

The main actor in this book is the algorithm, so in order to dig into the beauty and

challenges that pertain to its ideation and design, we need to start from one of its

many possible definitions. The Oxford English Dictionary reports that an algorithm

is, informally, “a process, or set of rules, usually one expressed in algebraic nota-

tion, now used esp. in computing, machine translation and linguistics.” The modern

meaning of algorithm is quite similar to that of recipe, method, procedure, or routine,

but in computer science the word connotes something more precisely described. In

fact many authoritative researchers have tried to pin down the term over the past 200

years by proposing definitions that have become more complicated and detailed but,

in the minds of their proponents, more precise and elegant.1 As algorithm designers

and engineers we will follow the definition provided by Donald Knuth at the end of

the 1960s [7]: an algorithm is a finite, definite, effective procedure, with some output.

Although these features may be intuitively clear and are widely accepted as require-

ments for a sequence of steps to be an algorithm, they are so dense in significance that

we need to look at them in more detail; this will lead us to the scenarios and challenges

posed nowadays by algorithm design and engineering, and to the motivation behind

this book.

• Finite: “An algorithm must always terminate after a finite number of steps ... a very

finite number, a reasonable number.” Clearly, the term “reasonable” is related to

the efficiency of the algorithm: Knuth [7] states that “In practice, we not only want

algorithms, we want good algorithms.” The “goodness” of an algorithm is related to

the use that the algorithm makes of some precious computational resources, such

as: time, space, communication, I/Os, energy, or just simplicity and elegance, which

both impact on its coding, debugging and maintenance costs.

• Definite: “Each step of an algorithm must be precisely defined; the actions to be

carried out must be rigorously and unambiguously specified for each case.” Knuth

made an effort in this direction by detailing what he called the “machine language”

1 See “algorithm characterizations” at https://en.wikipedia.org/wiki/Algorithm_characterizations.
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2 1 Introduction

for his “mythical MIX... the world’s first polyunsaturated computer.” Today there are

many other programming languages, such as C/C++, Java, Python, and so on. They

all specify a set of instructions that programmers may use to describe the proce-

dure[s] underlying their algorithm[s] in an unambiguous way: “unambiguity” here

is granted by the formal semantics that researchers have attached to each of these

instructions. This eventually means that anyone reading that algorithm’s description

will interpret it in a precise way: nothing will be left to personal choice.

• Effective: “all of the operations to be performed in the algorithm must be suffi-

ciently basic that they can in principle be done exactly and in a finite length of time

by a man using paper and pencil.” Therefore the notion of “step” invoked in the pre-

vious item implies that one has to dig into a complete and deep understanding of the

problem to be solved, and then into logical well-defined structuring of a step-by-step

solution.

• Procedure: “the sequence of specific steps arranged in a logical order.”

• Input: “quantities which are given to it initially before the algorithm begins. These

inputs are taken from specified sets of objects.” Therefore the behavior of the algo-

rithm is not unique, but it depends on the “sets of objects” given as input to be

processed.

• Output: “quantities which have a specified relation to the inputs” given by the

problem at hand, and constitute the answer returned by the algorithm for those

inputs.

In this book we will not use a formal approach to algorithm description, because

we wish to concentrate on the theoretically elegant and practically efficient ideas that

underlie the algorithmic solution of some interesting problems, without being lost in

the maze of programming technicalities. So, in every chapter, we will take an inter-

esting problem that emerges from a practical/useful application and then propose

solutions of increasing sophistication and improved efficiency, taking care that this

will not necessarily lead to increasing the complexity of the algorithm’s description.

Actually, problems were selected to admit surprisingly elegant solutions that can be

described in a few lines of code. So we will opt for the current practice of algorithm

design and describe our algorithms either colloquially or by using pseudocode that

mimics, the most well known languages. In all cases the algorithm descriptions will

be as rigorous as they need to be to match Knuth’s six features.

Elegance will not be the only goal of our algorithm design, of course; we will

also aim for efficiency, which commonly relates to the time/space complexity of the

algorithm. Traditionally, time complexity has been evaluated as a function of the input

size n by counting the (maximum) number of steps, say T(n), an algorithm takes to

complete its computation over an input of n items. Since the maximum is taken over

all inputs of that size, the time complexity is termed worst case because it concerns

the input that induces the worst behavior in time for the algorithm. Of course, the

larger n is, the larger T(n) is, which is therefore nondecreasing and positive. In a

similar way we can define the (worst-case) space complexity of an algorithm as the

maximum number of memory cells it uses for its computation over an input of size n.
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Introduction 3

This approach to the design and analysis of algorithms assumes a very simple model of

computation, known as the Von Neumann model (aka random access machine, or RAM

model). This model consists of a CPU and a memory of infinite size, and constant-

time access to each of its cells. Here we argue that every step takes a fixed amount

of time on a PC, which is the same for any operation, be it arithmetic, logical, or

just a memory access (read/write). Hence we postulate that it is enough to count the

number of steps executed by the algorithm in order to have an “accurate” estimate of

its execution time on a real PC. Two algorithms can then be compared according to

the asymptotic behavior of their time-complexity functions as n → +∞; the faster

the time complexity grows over inputs of increasing size, the worse the corresponding

algorithm is judged to be. The robustness of this approach has been debated for a long

time but, eventually, the RAM model dominated the algorithmic scene for decades

(and is still dominating it) because of its simplicity, which impacts on algorithm design

and evaluation, and its ability to estimate the algorithm performance “quite accurately”

on (old) PCs and small input sizes. Therefore it is not surprising that most introductory

books on algorithms deploy the RAM model to evaluate their performance [6].

But in the past ten years things have changed significantly, thus highlighting the

need for a shift in algorithm design and analysis. Two main changes occurred: the

architecture of modern PCs became more and more sophisticated (not just one CPU

and one monolithic memory), and input data has exploded in size (“n → +∞” does

not only belong in the theoretical world), because it is abundantly generated by many

sources, such as DNA sequencing, bank transactions, mobile communications, web

navigation and searches, auctions, and so on. The first change turned the RAM model

into an unsatisfactory abstraction of modern PCs, whereas the second change made

the design of asymptotically good algorithms ubiquitous and fruitful not only for the-

oreticians but also for a much larger professional audience because of their impact

on business [2], society [1], and science in general [3]. The net consequence was a

revamped scientific interest in algorithmics and the spread of the word “algorithm” to

even colloquial speech.

In order to make algorithms effective in this new scenario, researchers needed new

models of computation able to abstract in a better way the features of modern com-

puters and applications and, in turn, to derive more accurate estimates of algorithm

performance from the analysis of their complexity. Nowadays a modern PC consists

of one or more CPUs (multi-cores, GPUs, TPUs, etc.) and a very complex hierarchy

of memory levels, all with their own technological peculiarities (see Figure 1.1): L1

and L2 caches, internal memory, one or more mechanical or solid-state disks, and

possibly other (hierarchical) memories of multiple hosts distributed over a (possibly

geographic) network, the so-called “cloud.” Each of these memory levels has its own

cost, capacity, latency, bandwidth, and access method. The closer a memory level is to

the CPU, the smaller, the faster, and the more expensive it is. Currently, nanoseconds

suffice to access the caches, whereas milliseconds are needed to fetch data from disks

(aka I/O). This is the so-called I/O bottleneck, which amounts to the astonishing factor

of 105−106, nicely illustrated in a quote attributed to Thomas H. Cormen:
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4 1 Introduction

Figure 1.1 An example of memory hierarchy in a modern PC.

“The difference in speed between modern CPU and (mechanical) disk technologies

is analogous to the difference in speed in sharpening a pencil using a sharpener on

one’s desk or by taking an airplane to the other side of the world and using a

sharpener on someone else’s desk.”

Engineering research is trying nowadays to improve input/output subsystems to

reduce the impact of the I/O bottleneck on the efficiency of applications managing

large datasets; on the other hand, however, the improvements achievable by means

of good algorithm design and engineering abundantly surpass the best expected

technology advancements. Let us see the why, with a simple example.2

Consider three algorithms which have increasing I/O complexity (and thus, time

complexity): C1(n) = n, C2(n) = n2, and C3(n) = 2n. Here Ci(n) denotes the number

of disk accesses executed by the i-th algorithm to process n input data. Notice that the

first two algorithms execute a polynomial number of I/Os (in the input size n), whereas

the last one executes an exponential number of I/Os in n. Note that these I/O complex-

ities have a very simple (and thus unrealistic) mathematical form, because we want to

simplify the calculations without impairing our final conclusions. Let us now ask how

much data each of these algorithms is able to process in a fixed time interval of length

t, given that each I/O takes c time. The answer is obtained by solving the equation

Ci(n) × c = t with respect to n: so we get t/c data are processed by the first algorithm

in time t,
√

t/c data are processed by the second algorithm, and only log2(t/c) data

are processed by the third algorithm in time t. These values are already impressive by

themselves, and provide a robust understanding of why polynomial-time algorithms

are called efficient, whereas exponential-time algorithms are called inefficient: a large

change in the length t of the time interval induces just a tiny change in the amount of

data that exponential-time algorithms can process. Of course, this distinction admits

many exceptions when the problem instances have limited input size or have distribu-

tions that favor efficient executions. But, on the other hand, these examples are quite

rare, and the much more stringent bounds on execution time satisfied by polynomial-

time algorithms mean that they are considered provably efficient and the preferred

way to solve problems. Algorithmically speaking, most exponential-time algorithms

are merely implementations of the approach based on exhaustive searches, whereas

2 This is paraphrased from [8]; here we talk about I/Os instead of steps.
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Introduction 5

polynomial-time algorithms are generally made possible only through gaining some

deeper insight into the structure of a problem. So polynomial-time algorithms are the

right choice from many points of view.

Let us now assume that we run these algorithms with a better I/O-subsystem, say

one that is k times faster, and ask: How much data can be managed by this new

computer? To address this question we solve the previous equations with the time

interval set to the length k × t, thus implicitly assuming that the algorithms are exe-

cuted with k times more available running time than the previous computer. We find

that the first algorithm perfectly scales by a factor of k, the second algorithm scales

by a factor of
√

k, whereas the last algorithm scales only by an additive term log2 k.

We can see that the improvement induced by a k-times more powerful computer for

an exponential-time algorithm is totally negligible even in the presence of impressive

(and thus unrealistic) technology advancements. Super-linear time algorithms, like the

second one, are positively affected by technology advancements, but their performance

improvement decreases as the degree of the polynomial-time complexity grows: more

precisely, if C(n) = nα then a k-times more powerful computer induces an increase in

speed by a factor of
α
√

k. Overall, it is safe to say that the impact of a good algorithm

is far beyond any optimistic forecasting for the performance of future (mechanical or

solid-state) disks.3

Given this appetizer on the “power” of algorithm design and engineering, let us now

turn back to the problem of analyzing the performance of algorithms in modern com-

puters by considering the following simple example: compute the sum of the integers

stored in an array A[1, n]. The simplest idea is to scan A and accumulate in a temporary

variable the sum of the scanned integers. This algorithm executes n sums between two

integers, accesses each integer in A once, and thus takes n steps. Let us now generalize

this approach by considering a family of algorithms, denoted by As,b, which differen-

tiate themselves according to the pattern of accesses to A’s elements, as driven by the

parameters s and b. In particular, As,b looks at array A as logically divided into blocks

of b elements each, say Aj = A[ j × b + 1, ( j + 1) × b] for j = 0, 1, 2, . . . , n/b − 1.4

Then it sums all items in one block Aj before moving to the next block Aj+s, which

occurs s blocks farther on the right. Array A is considered cyclic so that, when the next

block lies out of A, the algorithm wraps around it, starting again from its beginning:

hence, the index of the next block is actually defined as ( j + s) mod (n/b).5 Clearly,

not all values of s allow us to take into account all of A’s blocks (and thus sum all of

A’s integers). And in fact we know that if s is coprime with n/b then the sequence of

visited-block indexes, that is, j = s× i mod (n/b) for i = 0, 1, . . . , n/b−1, is a permu-

tation of the integers {0, 1, . . . , n/b−1}, and thus As,b touches all blocks in A and hence

sums all of its integers. But the peculiarity of this parametrization is that by varying

s and b we can sum A’s integers according to different patterns of memory accesses:

3 See [11] for an extended treatment of this subject.
4 For the sake of presentation we assume that n and b are powers of two, so b divides n.
5 The modulo (mod) function is defined as follows: given two positive integers x and m > 1, x mod m is

the remainder of the division of x by m.
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6 1 Introduction

from the sequential scan we have described (setting s = b = 1), to sequential-wise

blocked access (setting a larger b), or to random-wise blocked access (setting a larger

s). Nicely enough, all algorithms As,b are equivalent from a computational point of

view, because they read and sum exactly n integers and thus take exactly n steps; but

from a practical point of view, they have different time performance which becomes

more and more different as the array size n grows. The reason for this is that, for a

growing n, data will be spread over more and more memory levels, each with its own

capacity, latency, bandwidth and access method. So the “equivalence in efficiency”

derived by adopting the RAM model, and counting the number of steps executed by

As,b, is not an accurate estimate of the real time required by the algorithms to sum A’s

elements.

We need a different model that grasps the essence of real computers and is simple

enough to not jeopardize the algorithm design and analysis. In a previous example

we argued that the number of I/Os is a good estimator for the time complexity of an

algorithm, given the large gap between disk- and internal-memory performance. This

is indeed captured by the 2-level memory model (aka disk model, or external-memory

model [11]), which abstracts the computer as comprising only two memory levels:

the internal memory of (bounded) size M , and the (unbounded) disk memory which

operates by reading/writing data via blocks of size B (called disk pages). Sometimes

the model consists of D disks, each of unbounded size, so that each I/O reads or writes

a total of D × B items stored in D pages, each one residing on a different disk. For the

sake of clarity we remark that the two-level view must not suggest to the reader that

this model is restricted to abstract disk-based computations; in fact, we are actually

free to choose any two levels of the memory hierarchy, with their M and B parameters

properly set. The algorithm performance is evaluated in this model by counting: (i) the

number of accesses to disk pages (hereafter I/Os), (ii) the running time (CPU time),

and (iii) the number of disk pages used by the algorithm as its working space. This

also suggests two golden rules for the design of “good” algorithms operating on large

datasets: they must exploit spatial locality and temporal locality. The former imposes

a data organization in the disk(s) that makes each accessed disk page as useful as

possible; the latter requires as much useful work as possible over the data fetched in

internal memory, before it is written back to disk.

In the light of this new model, let us reanalyze the time complexity of algorithms

As,b by taking into account I/Os, given that the CPU time is n and the space occupancy

is n/B disk pages independently of s and b. We start from the simplest settings for s

and b in order to gain some intuitions about the general formulas. The case s = 1 is

obvious: algorithms A1,b scan A rightward, summing the items one block at a time, by

taking n/B I/Os independently of the value of b. As s and b change, the situation gets

complicated, but by not much. As an example, fix s = 2 and select some b < B that, for

simplicity, is assumed to divide the block-size B. Every block of size B consists of B/b

smaller (logical) blocks of size b, and the algorithms A2,b examine only half of them

because of the jump s = 2. This actually means that each B-sized page is half utilized

in the summing process, thus inducing a total of 2n/B I/Os. It is then not difficult to

generalize this formula by writing a cost of min{s, B/b} × (n/B) I/Os, which correctly
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Introduction 7

gives n/b for the case of large jumps over array A. This formula provides a better

approximation of the real time complexity of the algorithms As,b, although it does

not capture all features of the disk: all I/Os are evaluated as equal, independently of

their distribution. This is clearly not precise, because on real disks sequential I/Os are

faster than random I/Os.6 As such, referring to the previous example, all algorithms

As,B have the same I/O complexity n/B, independently of s, although their behavior is

rather different if executed on a (mechanical) disk, because of the disk seeks induced

by increasing s. Therefore, we can conclude that even the two-level memory model

provides an approximation of the behavior of algorithms on real computers, although

its results are sufficiently good that it has been widely adopted in the literature to

evaluate algorithm performance on massive datasets. So in order to be as precise as

possible, we will evaluate algorithms in these pages not only by specifying the number

of executed I/Os but also by characterizing their distribution (random vs. sequential)

over the disk.

At this point one could object that given the impressive technological advancements

of recent years, internal-memory size M is so large that most of the working set of an

algorithm (roughly speaking, the set of pages it will reference in the near future) can fit

into it, thus reducing significantly the number of I/O faults. We will argue that even a

small portion of data resident in disk makes the algorithm slower than expected, so that

data organization cannot be neglected even in these extremely favorable situations. Let

us see why, by means of a “back of the envelope” calculation.

Assume that the input size n = (1 + ǫ)M is larger than the internal-memory size

of a factor ǫ > 0. The question is how much ǫ impacts on the average cost of an

algorithm step, given that it may access a datum located either in internal memory or

on disk. To simplify our analysis, while still obtaining a meaningful conclusion, we

assume that p(ǫ) is the probability of an I/O fault: hence, if p(ǫ) = 1, the algorithm

always accesses data on disk; if p(ǫ) = 0, the algorithm has a working set smaller than

the internal-memory size, and thus it always accesses data in internal memory; finally,

p(ǫ) = ǫM
(1+ǫ)M

= ǫ
1+ǫ

when the algorithm has a fully random behavior in accessing

its input data. In other words, we can look at p(ǫ) as a measure of the non-locality of

the memory references of the analyzed algorithm.

To complete the notation, let us indicate with c the time cost of one I/O with respect

to one internal-memory access (we have in practice c ≈ 105 − 106, see above), with

f the fraction of steps that induce a memory access in the running algorithm (this is

typically 30%−40%, according to [5]), with tm the average time cost of such memory

accesses and the cost of a computation step or an internal-memory access set as 1.

To derive tm we have to distinguish two cases: an in-memory access (occurring with

probability 1 − p(ǫ)) or a disk access (occurring with probability p(ǫ)). So we have

tm = 1 × (1 − p(ǫ)) + c × p(ǫ).

6 Conversely, this difference will be almost negligible in an (electronic) memory, such as DRAM or

modern solid-state disks, where the distribution of the memory accesses does not significantly impact on

the throughput of the memory/SSD.
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8 1 Introduction

Now we are ready to estimate the average time cost of a step for an algorithm

working in this scenario: it is 1 × (1 − f ) + tm × f , since 1 − f is the fraction of

computing steps and f is the fraction of memory accesses (both in internal memory

and on disk). By plugging in the value computed for tm, we can lower bound that cost

by 3 × 104 × p(ǫ). This formula clearly shows that, even for algorithms exploiting

locality of references (i.e. a small p(ǫ)), the slowdown may be significant, resulting in

four orders of magnitude larger than what might be expected (i.e. p(ǫ)). As an example,

take an algorithm that forces locality of references into its memory accesses: say 1 out

of 1000 memory accesses go to data stored on disk (i.e. p(ǫ) = 0.001). Then, its

performance gets slowed down by a factor larger than 30 in comparison with the case

in which its computation would be fully executed in internal memory.

It goes without saying that this is just the tip of the iceberg, because the larger the

amount of data to be processed by an algorithm, the higher is the number of memory

levels involved in the storage of this data and, hence, the more varied are the types

of “memory faults” that need to be coped with for achieving efficiency. The overall

message is that neglecting questions pertaining to the cost of memory references in a

hierarchical-memory system may prevent the use of an algorithm for large input data.

Motivated by these premises, this book will provide a few examples of challeng-

ing problems that admit elegant algorithmic solutions whose efficiency is crucial to

manage the large datasets that occur in many real-world applications. Details of the

algorithm design will be accompanied by several comments on the difficulties that

underlie the engineering of those algorithms: how to turn a “theoretically efficient”

algorithm into a “practically efficient” code. In fact, too many times, as a theore-

tician, I was told that “your algorithm is far from being amenable to an efficient

implementation!” Furthermore, by following the recent surge of investigations in algo-

rithm engineering [10] (not to be confused with the “practice of algorithms”), we will

also dig into the deep computational features of some algorithms by resorting to a

few other successful models of computation – mainly the streaming model [9] and

the cache-oblivious model [4]. These models will allow us to capture and highlight

some interesting issues of the underlying computation, such as disk passes (stream-

ing model), and universal scalability (cache-oblivious model). We will try our best to

describe all these issues in their simplest terms but, nonetheless, we will be unsuc-

cessful in turning this “rocket science for non-boffins” into a “science for dummies”

[2]. In fact many more things have to fall into place for algorithms to work: top IT

companies (like Amazon, Facebook, Google, IBM, Microsoft, Oracle, Spotify, Twit-

ter, etc.) are perfectly aware of the difficulty of finding people with the right skills for

designing and engineering “good” algorithms. This book will only scratch the surface

of algorithm design and engineering, with the main goal of inspiring you in your daily

job as a software designer and engineer.
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