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1 Introduction

This chapter discusses fundamentally different mental images of large- versus small-

dimensional machine learning through examples of sample covariance and kernel

matrices, on both synthetic and real data. Random matrix theory is presented as a flex-

ible and powerful tool to assess, understand, and improve classical machine learning

methods in this modern large-dimensional setting.

1.1 Motivation: The Pitfalls of Large-Dimensional Statistics

1.1.1 The Big Data Era: When n Is No Longer Much Larger than p

The big data revolution comes along with the challenging needs to parse, mine, and

compress a large amount of large-dimensional and possibly heterogeneous data. In

many applications, the dimension p of the observations is as large as – if not much

larger than – their number n. In array processing and wireless communications, the

number of antennas required for fine localization resolution or increased communi-

cation throughput may be as large (today in the order of hundreds) as the number of

available independent signal observations [Li and Stoica, 2007, Lu et al., 2014]. In

genomics, the identification of correlations among hundreds of thousands of genes

based on a limited number of independent (and expensive) samples induces an even

larger ratio p/n [Arnold et al., 1994]. In statistical finance, portfolio optimization relies

on the need to invest on a large number p of assets to reduce volatility but at the same

time to estimate the current (rather than past) asset statistics from a relatively small

number n of asset return records [Laloux et al., 2000].

As we shall demonstrate in the following section, the fact that in these problems

n is not much larger than p annihilates most of the results from standard asymp-

totic statistics that assume n alone is large [Vaart, 2000]. As a rule of thumb, by

“much larger” we mean here that n must be at least 100 times larger than p for

standard asymptotic statistics to be of practical convenience (see our argument in Sec-

tion 1.1.2). Many algorithms in statistics, signal processing, and machine learning are

precisely derived from this n ≫ p assumption that is no longer appropriate today. A

major objective of this book is to cast some light on the resulting biases and prob-

lems incurred and to provide a systematic random matrix framework to improve these

algorithms.
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2 1 Introduction

Possibly more importantly, we will see in this book that (small p) small-dimensional

intuitions at the core of many machine learning algorithms (starting with spectral

clustering [Ng et al., 2002, Luxburg, 2007]) may strikingly fail when applied in a

simultaneously large n,p setting. A compelling example lies in the notion of “dis-

tance” between vectors. Most classification methods in machine learning are rooted

in the observation that random data vectors arising from a mixture distribution (say

Gaussian) gather in “groups” of close-by vectors in the Euclidean norm. When deal-

ing with large-dimensional data, however, concentration phenomena arise that make

Euclidean distances useless, if not counterproductive: Vectors from the same mixture

class may be further away in Euclidean distance than vectors arising from different

classes. While classification may still be doable, it works in a rather different way

from our small-dimensional intuition. The book intends to prepare the reader for the

multiple traps caused by this “curse of dimensionality.”

1.1.2 Sample Covariance Matrices in the Large n,p Regime

Let us consider the following example that illustrates a first elementary, yet counterin-

tuitive, result: For simultaneously large n,p, the sample covariance matrix Ĉ ∈ R
p×p

based on n samples xi ∼N (0,C) is an entry-wise consistent estimator of the popula-

tion covariance C ∈ R
p×p (i.e., ‖Ĉ−C‖∞ → 0 as p,n → ∞ for ‖A‖∞ ≡ maxi j |Ai j |)

while overall being an extremely poor estimator in a (more practical) operator norm

sense (i.e., ‖Ĉ−C‖ �→ 0, with ‖ · ‖ being the operator norm here). Matrix norms are,

in particular, not equivalent in the large n,p scenario.

Let us detail this claim, in the simplest case where C = Ip . Consider a dataset

X = [x1,. . . ,xn ] ∈ R
p×n of n independent and identically distributed (i.i.d.) observa-

tions from a p-dimensional standard Gaussian distribution, that is, xi ∼ N (0,Ip) for

i ∈ {1,. . . ,n}. We wish to estimate the population covariance matrix C = Ip from the

n available samples. The maximum likelihood estimator in this zero-mean Gaussian

setting is the sample covariance matrix Ĉ defined by

Ĉ =
1

n

n

∑
i=1

xix
T
i =

1

n
XXT. (1.1)

By the strong law of large numbers, for fixed p, Ĉ → Ip almost surely as n → ∞, so

that ‖Ĉ− Ip‖ a.s.−−→ 0 holds for any standard matrix norm and in particular for the

operator norm.

One must be more careful when dealing with the case n,p→∞ with the ratio p/n →
c ∈ (0,∞) (or, from a practical standpoint, n is not much larger than p). First, note that

the entry-wise convergence still holds since, invoking the law of large numbers again,

[Ĉ]i j =
1

n

n

∑
l=1

[X]il [X] jl
a.s.−−→

{

1, i = j

0, i �= j.

Besides, by a concentration inequality argument, it can even be shown that

max
1≤i, j≤p

∣

∣[Ĉ− Ip ]i j
∣

∣

a.s.−−→ 0,
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1.1 Motivation: The Pitfalls of Large-Dimensional Statistics 3

which holds as long as p is no larger than a polynomial function of n, and thus:

‖Ĉ− Ip‖∞
a.s.−−→ 0.

Consider now the case p > n. Since Ĉ = 1
n ∑

n
i=1 xix

T
i is the sum of n rank-one

matrices, the rank of Ĉ is at most equal to n and thus, being a p× p matrix with p > n,

the sample covariance matrix Ĉ must be a singular matrix having at least p− n > 0

null eigenvalues. As a consequence,

‖Ĉ− Ip‖ �→ 0

for ‖ · ‖ the matrix operator (or spectral) norm. This last result actually extends to the

general case where p/n → c ∈ (0,∞). As such, matrix norms cannot be considered

equivalent in the regime where p is not negligible compared to n. This follows from

the fact that the coefficients involved in the equivalence of norm relation between the

infinity and operator norm depend on p; here, for instance, we have that for symmetric

matrices A ∈ R
p×p , ‖A‖∞ ≤ ‖A‖ ≤ p‖A‖∞.

Unfortunately, in practice, the (nonconverging) operator norm is of more practical

interest than the (converging) infinity norm.

Remark 1.1 (On the importance of operator norm). For practical purposes, this

“loss” of norm equivalence for large p raises the question of the relevant matrix norm

to consider for a given application. For the purpose of the present book, and for most

applications in machine learning, the operator (or spectral) norm is the most relevant.

First, the operator norm is the matrix norm induced by the Euclidean norm of vectors.

Thus, the study of regression vectors or label/score vectors in classification is natu-

rally attached to the spectral study of matrices. Besides, we will often be interested

in the asymptotic equivalence of families of large-dimensional symmetric matrices. If

‖Ap −Bp‖→ 0 for matrix sequences {Ap} and {Bp}, indexed by their dimension p,

then according to Weyl’s inequality (see, e.g., Lemma 2.10 in Section 2.2.1),

max
i

∣

∣λi(Ap)− λi(Bp)
∣

∣→ 0

for λ1(A) ≥ λ2(A) ≥ ·· · , the eigenvalues of A in a decreasing order. Besides, for

ui(Ap), an eigenvector of Ap associated with an isolated eigenvalue λi(Ap) (i.e., such

that min{|λi+1(Ap)− λi(Ap)|,|λi(Ap)− λi−1(Ap)|} > ε for some ε > 0 uniformly

on p),
∥

∥ui(Ap)−ui(Bp)
∥

∥→ 0.

These results ensure that, as far as spectral properties are concerned, Ap can be stud-

ied equivalently through Bp . We will often use this argument to investigate intractable

random matrices Ap by means of a more tractable “proxy” Bp .

The pitfall that consists in assuming that Ĉ is a valid estimator of C since

‖Ĉ−C‖∞
a.s.−−→ 0 may thus have deleterious practical consequences when n is not

significantly larger than p.

Resuming our discussion of norm convergence, it is now natural to ask whether Ĉ,

which badly estimates C, has a controlled asymptotic behavior. There precisely lay the

first theoretical interests of random matrix theory. While Ĉ itself does not converge in
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4 1 Introduction
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Figure 1.1 Histogram of the eigenvalues of Ĉ versus the Marc̆enko–Pastur law, for X having

standard Gaussian entries, p = 500 and n = 50000. Code on web: MATLAB and Python.

any useful way, its eigenvalue distribution does exhibit a traceable limiting behavior

[Marčenko and Pastur, 1967, Silverstein and Bai, 1995, Bai and Silverstein, 2010]. The

seminal result in this direction, due to Marc̆enko and Pastur, states that, for C = Ip , as

n,p → ∞, with p/n → c ∈ (0,∞), it holds with probability 1 that the random discrete

eigenvalue/empirical spectral distribution

μp ≡ 1

p

p

∑
i=1

δ
λi (Ĉ)

converges in law to a nonrandom smooth limit, today referred to as the “Marc̆enko–

Pastur law” [Marčenko and Pastur, 1967],

μ(dx) = (1− c−1)+δ0(x)+
1

2πcx

√

(x−E−)+(E+− x)+ dx, (1.2)

where E± = (1±√
c)2 and (x)+ ≡ max(x,0).

Figure 1.1 compares the empirical spectral distribution of Ĉ to the limiting

Marc̆enko–Pastur law given in (1.2), for p = 500 and n = 50000.

The elementary Marc̆enko–Pastur result is already quite instructive and insightful.

Remark 1.2 (When is one under the random matrix regime?). Equation (1.2) reveals

that the eigenvalues of Ĉ, instead of concentrating at x = 1 as a large-n alone analysis

would suggest, are spread from (1−√
c)2 to (1+

√
c)2. As such, the eigenvalues span

on a range

(1+
√

c)2 − (1−√
c)2 = 4

√
c.

This is a slow decaying behavior with respect to c = lim p/n. In particular, for

n = 100p, in which case, one would expect a sufficiently large number of samples

for Ĉ to properly estimate C = Ip , one has 4
√

c = 0.4, which is a large spread around
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1.1 Motivation: The Pitfalls of Large-Dimensional Statistics 5

the mean (and true) eigenvalue 1. This is visually confirmed by Figure 1.1 for p = 500

and n = 50000, where the histogram of the eigenvalues is nowhere near concentrated

at x = 1. Therefore, random matrix results will be much more accurate than classical

asymptotic statistics even when n ∼ 100p. As a telling example, estimating the covari-

ance matrix of each digit from the popular Modified National Institute of Standards

and Technology (MNIST) dataset [LeCun et al., 1998], made of no more than 60000

training samples (and thus about n = 6000 samples per digit) of size p = 784, is likely

a hazardous undertaking.

Remark 1.3 (On universality). Although introduced here in the context of a Gaussian

distribution for xi , the Marc̆enko–Pastur law applies to much more general cases.

Indeed, the result remains valid as long as the xis have independent normalized entries

of zero mean and unit variance (and even beyond this setting, see El Karoui [2009]

and Louart and Couillet [2018]). Similar to the law of large numbers in standard

asymptotic statistics, this universality phenomenon commonly arises in random matrix

theory and large-dimensional statistics. We will exploit this phenomenon in the book

to justify the wide applicability of the presented results, even to real datasets. See

Chapter 8 for more detail.

1.1.3 Kernel Matrices of Large-Dimensional Data

Another less-known but equally important example of the curse of dimensionality in

machine learning involves the loss of relevance of (the notion of) Euclidean distance

between large-dimensional data vectors. To be more precise, we will see in the sequel

that, in an asymptotically nontrivial classification setting (i.e., ensuring that asymp-

totic classification is neither trivially easy nor impossible), large and numerous data

vectors x1,. . . ,xn ∈R
p extracted from a few-class (say two-class) mixture model tend

to be asymptotically at equal (Euclidean) distance from one another, irrespective of

their corresponding class. Roughly speaking, in this nontrivial setting and under some

reasonable statistical assumptions on the xis, we have

max
1≤i �= j≤n

{

1

p
‖xi −x j‖2 − τ

}

→ 0 (1.3)

for some constant τ > 0 as n,p → ∞, independently of the classes (same or different)

of xi and x j (here the normalization by p is used for compliance with the notations in

the remainder of this book and has no particular importance).

This asymptotic behavior is extremely counterintuitive and conveys the idea that

classification by standard methods ought not to be doable in this large-dimensional

regime. Indeed, in the conventional small-dimensional intuition that forged many of

the leading machine learning algorithms of everyday use (such as spectral clustering

[Ng et al., 2002, Luxburg, 2007]), two data points are assigned to the same class if

they are “close” in Euclidean distance. Here we claim that, when p is large, data pairs

are neither close nor far from each other, regardless of their belonging to the same

class or not. Despite this troubling loss of individual discriminative power between

data pairs, we subsequently show that, thanks to a collective behavior of all data
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6 1 Introduction

belonging to the same (few and thus large) classes, data classification or clustering

is still achievable. Better, we shall see that, while many conventional methods devised

from small-dimensional intuitions do fail in this large-dimensional regime, some pop-

ular approaches, such as the Ng–Jordan–Weiss spectral clustering method [Ng et al.,

2002] or the PageRank semisupervised learning approach [Avrachenkov et al., 2012],

still function. But the core reasons for their functioning are strikingly different from

the reasons of their initial designs, and they often operate far from optimally.

The Nontrivial Classification Regime

To get a clear picture of the source of Equation (1.3), we first need to clarify what

we refer to as the “asymptotically nontrivial” classification setting. Consider the

simplest scenario of a binary Gaussian mixture classification: Given a training set

x1,. . . ,xn ∈ R
p of n samples independently drawn from the two-class (C1 and C2)

Gaussian mixture,

C1 : x ∼N (µ,Ip), C2 : x ∼N (−µ,Ip +E), (1.4)

each drawn with probability 1/2, for some deterministic µ ∈ R
p and symmetric

E∈R
p×p , both possibly depending on p. In the ideal case where µ and E are perfectly

known, one can devise a (decision optimal) Neyman–Pearson test. For an unknown x,

genuinely belonging to C1, the Neyman–Pearson test to decide on the class of x reads

(x+ µ)T(Ip +E)−1(x+ µ)− (x− µ)T(x− µ)
C1

≷
C2

− logdet(Ip +E). (1.5)

Writing x = µ+ z for z ∼N (0,Ip), the above test is equivalent to

T(x)≡ 4µT(Ip +E)−1
µ+4µT(Ip +E)−1z+ zT

(

(Ip +E)−1 − Ip
)

z

+ logdet(Ip +E)
C1

≷
C2

0. (1.6)

Since Uz for U ∈R
p×p , an eigenvector basis of (Ip+E)−1 (and thus of (Ip+E)−1 −

Ip), follows the same distribution as z, the random variable T(x) can be written

as the sum of p independent random variables. Further assuming that ‖µ‖ = O(1)

with respect to p, by Lyapunov’s central limit theorem (e.g., [Billingsley, 2012, The-

orem 27.3]) and the fact that Var[zTAz] = 2tr(A2) for symmetric A ∈ R
p×p and

Gaussian z, we have, as p → ∞,

V
−1/2
T (T(x)− T̄)

d−→ N (0,1),

where

T̄ ≡ 4µT(Ip +E)−1
µ+ tr(Ip +E)−1 − p+ logdet(Ip +E),

VT ≡ 16µT(Ip +E)−2
µ+2tr

(

(Ip +E)−1 − Ip
)2
.
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1.1 Motivation: The Pitfalls of Large-Dimensional Statistics 7

As a consequence, the classification of x ∈ C1 is asymptotically nontrivial (i.e., the

classification error neither goes to 0 nor 1 as p → ∞) if and only if T̄ is of the same

order as
√

VT . Considering the (worst-case) scenario where E = 0, we must have

‖µ‖ ≥ O(1) with respect to p (indeed, if instead ‖µ‖ = o(1), the classification of

x is asymptotically impossible).

Under the constraint ‖µ‖= O(1), we move on to consider the case E �= 0 with the

spectral norm constraint ‖E‖ = o(1). By a Taylor expansion of both (Ip +E)−1 and

logdet(Ip +E) around Ip , we obtain

T̄ = 4‖µ‖2 − 1

2
tr(E2)+ o(1);

VT = 16‖µ‖2 +2tr(E2)+ o(1),

which demands tr(E2) to be of order O(1) (same as ‖µ‖) so as to have discriminative

power. Since tr(E2)≤ p‖E‖2, with equality if and only if E is proportional to the iden-

tity, that is, E = ǫIp , one must have ‖E‖ ≥ O(p−1/2). Also, since O(1) = tr(E2) ≤
(trE)2, we must have | trE| ≥ O(1). This allows us to conclude on the following

nontrivial classification conditions:

‖µ‖ ≥ O(1), ‖E‖ ≥ O(p−1/2), | tr(E)| ≥ O(1), tr(E2)≥ O(1). (1.7)

These are the minimal conditions for classification in the case of perfectly known

means and covariances in the following sense: (i) if none of the inequalities hold (i.e.,

if the means and covariances from both classes are too close), asymptotic classification

must fail and (ii) if at least one of the inequalities is not tight (say if ‖µ‖ ≥ O(
√

p)),

asymptotic classification becomes trivial.1

We shall subsequently see that (1.7) precisely induces the asymptotic loss of dis-

tance discrimination raised in (1.3) but that standard spectral clustering methods based

on n ∼ p data remain valid.

Asymptotic Loss of Pairwise Distance Discrimination

Under the equality case for the conditions in (1.7), consider the (normalized)

Euclidean distance between two distinct data vectors xi ∈ Ca and x j ∈ Cb ,i �= j,

given by

1

p
‖xi −x j‖2 =

{

1
p
‖zi − z j‖2 + Ap−1, for a = b = 2

1
p
‖zi − z j‖2 + Bp−1, for a = 1,b = 2,

(1.8)

1 It should be noted here that, unlike in computer science, we will stick in this book with the notation O(·)
indifferently from the complexity notations Ω(·), O(·), and Θ(·). The exact meaning of O(·) will be

clear in context. For instance, under computer science notations, Equation (1.7) would be ‖µ‖ ≥ Θ(1),
‖E‖ ≥ Θ(p−1/2), | tr(E)| ≥ Θ(1), and tr(E2)≥ Θ(1).

www.cambridge.org/9781009123235
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-12323-5 — Random Matrix Methods for Machine Learning
Romain Couillet , Zhenyu Liao 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 1 Introduction

v2 =

[ ]

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(a) p = 5

v2 =

[ ]

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(b) p = 250

Figure 1.2 Gaussian kernel matrices K and the second top eigenvectors v2 for (a) small- and

(b) large-dimensional data X = [x1,. . . ,xn ] ∈ R
p×n , with x1,. . . ,xn/2 ∈ C1 and

xn/2+1,. . . ,xn ∈ C2 for n = 5000. Code on web: MATLAB and Python.

where

A = zTi Ezi + zTj Ez j −2zTi Ez j and

B = zTj (E+E2/4)z j − zTi Ez j +4‖µ‖2 +4µT(zi − z j)+ o(1)

are both of order O(1)
(

and thus both Ap−1 and Bp−1 are of order O(p−1)
)

, while the

leading term 1
p
‖zi − z j‖2 of (1.8) is of order O(1). As such,

max
1≤i �= j≤n

{

1

p
‖zi − z j‖2 −2

}

→ 0

almost surely as n,p → ∞ (this follows by exploiting the fact that ‖zi − z j‖2 is a chi-

square random variable with p degrees of freedom). As a consequence, as previously

claimed in (1.3),

max
1≤i �= j≤n

{

1

p
‖xi −x j‖2 − τ

}

→ 0

for τ = 2 here. Besides, on a closer inspection of (1.8), we find that, beyond

this common value τ of order O(1), the discriminative class information in means

4‖µ‖2/p and that in covariances zTj (E+E2/4)z j/p ≃ tr(E+E2/4)/p are both of order

O(p−1), while by the central limit theorem, ‖zi − z j‖2/p = 2+O(p−1/2). The class

information is thus largely overtaken by the random fluctuations. As a consequence,

asymptotically, the pairwise distance ‖xi − x j‖2/p contains no exploitable statistical
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1.1 Motivation: The Pitfalls of Large-Dimensional Statistics 9

information (about µ or E) to distinguish if the xi and x j vectors belong to the same or

different classes.

To visually confirm this joint convergence of the data distances, in Figure 1.2, we

display the content of the Gaussian (heat) kernel matrix K ∈ R
n×n , with [K]i j =

exp
(

−‖xi −x j‖2/(2p)
)

, and the associated second dominant eigenvector v2 for a two-

class Gaussian mixture x ∼ N (±µ,Ip), with µ = [2; 0p−1]. For a constant n = 500,

we take p = 5 in Figure 1.2(a) and p = 250 in Figure 1.2(b).

While the “block-structure” in the case of p = 5 of Figure 1.2(a) does agree with

the small-dimensional intuition – data vectors from the same class are “closer” to one

another in diagonal blocks with larger values (since exp(−x/2) decreases with x) than

in nondiagonal blocks – this intuition collapses when large-dimensional data vectors

are considered. Indeed, in the large data setting of Figure 1.2(b), all entries (except

obviously on the diagonal) of K have approximately the same value, which, we now

know from (1.3), is exp(−1).

This is no longer surprising to us. However, what remains surprising in Figure 1.2

at this stage of our analysis is that the eigenvector v2 of K seems not affected by this

(asymptotic) loss of class-wise discrimination of individual distances. And spectral

clustering seems to work equally well for p = 5 and for p = 250, despite the radical

and intuitively destructive change in the behavior of K for p = 250.

Explaining Kernel Methods with Random Matrix Theory

The fundamental reason behind this surprising behavior lies in the accumulated effect

of the n/2 small “hidden” informative terms ‖µ‖2, trE and tr(E2) in each class, which

collectively “steer” the several top eigenvectors of K. More explicitly, we shall see

in the course of this book that the Gaussian kernel matrix K can be asymptotically

expanded as

K = exp(−1)

(

1n1Tn +
1

p
ZTZ

)

+ f (µ,E) · 1

p
jjT+∗+ o‖·‖(1), (1.9)

where Z = [z1,. . . ,zn ] ∈ R
p×n is a Gaussian noise matrix, f (µ,E) = O(1), and

j = [1n/2; − 1n/2] is the class-information “label” vector (as in the setting of

Figure 1.2). Here “*” symbolizes extra terms of marginal importance to the present

discussion, and o‖·‖(1) represents terms of asymptotically vanishing operator norm as

n,p → ∞. The important remark to be made here is that

(i) Under this description, [K]i j = exp(−1)(1+ zTi z j/p)± f (µ,E)/p+∗, with

f (µ,E)/p ≪ zTi z j/p = O(p−1/2); this is consistent with our previous discussion:

The statistical information is entry-wise dominated by noise.

(ii) From a spectral viewpoint, ‖ZTZ/p‖= O(1), as per the Marc̆enko–Pastur

theorem [Marčenko and Pastur, 1967] discussed in Section 1.1.2 and visually

confirmed in Figure 1.1, while ‖ f (µ,E) · jjT/p‖= O(1): Thus, spectrum-wise,

the information stands on even ground with noise.
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(a) MNIST data
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(b) Fashion-MNIST data

Figure 1.3 Gaussian kernel matrices K and the second top eigenvectors v2 for (a) MNIST

[LeCun et al., 1998] (class 8 versus 9) and (b) Fashion-MNIST [Xiao et al., 2017] data

(class 5 versus 7), with x1,. . . ,xn/2 ∈ C1 and xn/2+1,. . . ,xn ∈ C2 for n = 5000. Code on

web: MATLAB and Python.

The mathematical magic at play here lies in f (µ,E) · jjT/p having entries of order

O(p−1) while being a low-rank (here unit-rank) matrix: All its “energy” concentrates

in a single nonzero eigenvalue. As for ZTZ/p, with larger O(p−1/2) amplitude entries,

it is composed of “essentially independent” zero-mean random variables and tends

to be of full rank and spreads its energy over its n eigenvalues. Spectrum-wise, both

f (µ,E) · jjT/p and ZTZ/p meet on even ground under the nontrivial classification

setting of (1.7).

We shall see in Section 4 that things are actually not as clear-cut and, in particular,

that not all choices of kernel functions can achieve the same nontrivial classification

rates. In particular, the popular Gaussian (radial basis function [RBF]) kernel will be

shown to be largely suboptimal in this respect.

Do Real Data Follow Small- or Large-Dimensional Intuitions?

A first glimpse into this riddle, fundamental for the practical design of machine

learning algorithms, is provided in Figure 1.3. Similar to Figure 1.2 for synthetic

Gaussian data, Figure 1.3 depicts the content of kernel matrices built from the

MNIST [LeCun et al., 1998] and Fashion-MNIST data [Xiao et al., 2017], with

p = 28× 28 = 784 and n = 5000 in both cases. In Figure 1.4, instead of raw data,

we display the features extracted from popular deep neural networks, such as VGG-16

[Simonyan and Zisserman, 2014] of the more complex CIFAR-10 images (with
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