

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 213

Editorial Board

J. BERTOIN, B. BOLLOBÁS, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO

HARMONIC FUNCTIONS AND RANDOM WALKS ON GROUPS

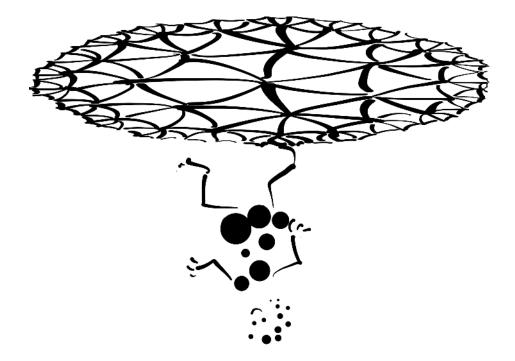
Research in recent years has highlighted the deep connections between the algebraic, geometric, and analytic structures of a discrete group. New methods and ideas have resulted in an exciting field, with many opportunities for new researchers. This book is an introduction to the area from a modern vantage point. It incorporates the main basics, such as Kesten's amenability criterion, the Coulhon and Saloff-Coste inequality, random walk entropy and bounded harmonic functions, the Choquet–Deny theorem, the Milnor–Wolf theorem, and a complete proof of Gromov's theorem on polynomial growth groups.

The book is especially appropriate for young researchers, and those new to the field, accessible even to graduate students. An abundance of examples, exercises, and solutions encourage self-reflection and the internalization of the concepts introduced. The author also points to open problems and possibilities for further research.

Ariel Yadin is Professor in the Department of Mathematics at Ben-Gurion University of the Negev, Israel. His research is focused on the interplay between random walks and the geometry of groups. He has taught a variety of courses on the subject and has been part of a new wave of investigation into the structure of spaces of unbounded harmonic functions on groups.

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board


J. Bertoin, B. Bollobás, W. Fulton, B. Kra, I. Moerdijk, C. Praeger, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing, visit www.cambridge.org/mathematics.

Already Published

- 173 P. Garrett Modern Analysis of Automorphic Forms by Example, I
- 174 P. Garrett Modern Analysis of Automorphic Forms by Example, II
- 175 G. Navarro Character Theory and the McKay Conjecture
- 176 P. Fleig, H. P. A. Gustafsson, A. Kleinschmidt & D. Persson Eisenstein Series and Automorphic Representations
- 177 E. Peterson Formal Geometry and Bordism Operators
- 178 A. Ogus Lectures on Logarithmic Algebraic Geometry
- 179 N. Nikolski Hardy Spaces
- 180 D.-C. Cisinski Higher Categories and Homotopical Algebra
- 181 A. Agrachev, D. Barilari & U. Boscain A Comprehensive Introduction to Sub-Riemannian Geometry
- 182 N. Nikolski Toeplitz Matrices and Operators
- 183 A. Yekutieli Derived Categories
- 184 C. Demeter Fourier Restriction, Decoupling and Applications
- 185 D. Barnes & C. Roitzheim Foundations of Stable Homotopy Theory
- 186 V. Vasyunin & A. Volberg The Bellman Function Technique in Harmonic Analysis
- 187 M. Geck & G. Malle The Character Theory of Finite Groups of Lie Type
- 188 B. Richter Category Theory for Homotopy Theory
- 189 R. Willett & G. Yu Higher Index Theory
- 190 A. Bobrowski Generators of Markov Chains
- 191 D. Cao, S. Peng & S. Yan Singularly Perturbed Methods for Nonlinear Elliptic Problems
- 192 E. Kowalski An Introduction to Probabilistic Number Theory
- 193 V. Gorin Lectures on Random Lozenge Tilings
- 194 E. Riehl & D. Verity Elements of ∞-Category Theory
- 195 H. Krause Homological Theory of Representations
- 196 F. Durand & D. Perrin Dimension Groups and Dynamical Systems
- 197 A. Sheffer Polynomial Methods and Incidence Theory
- 198 T. Dobson, A. Malnič & D. Marušič Symmetry in Graphs
- 199 K. S. Kedlaya p-adic Differential Equations
- 200 R. L. Frank, A. Laptev & T. Weidl Schrödinger Operators: Eigenvalues and Lieb-Thirring Inequalities
- 201 J. van Neerven Functional Analysis
- 202 A. Schmeding An Introduction to Infinite-Dimensional Differential Geometry
- 203 F. Cabello Sánchez & J. M. F. Castillo Homological Methods in Banach Space Theory
- 204 G. P. Paternain, M. Salo & G. Uhlmann Geometric Inverse Problems
- 205 V. Platonov, A. Rapinchuk & I. Rapinchuk Algebraic Groups and Number Theory, I (2nd Edition)
- 206 D. Huybrechts The Geometry of Cubic Hypersurfaces
- 207 F. Maggi Optimal Mass Transport on Euclidean Spaces
- 208 R. P. Stanley Enumerative Combinatorics, II (2nd Edition)
- 209 M. Kawakita Complex Algebraic Threefolds
- 210 D. Anderson & W. Fulton Equivariant Cohomology in Algebraic Geometry
- 211 G. Pineda Villavicencio Polytopes and Graphs
- 212 R. Pemantle, M. C. Wilson & S. Melczer Analytic Combinatorics in Several Variables (2nd Edition)

Harmonic Functions and Random Walks on Groups

ARIEL YADIN

Ben-Gurion University of the Negev

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009123181

DOI: 10.1017/9781009128391

© Ariel Yadin 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781009128391

First published 2024

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-12318-1 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

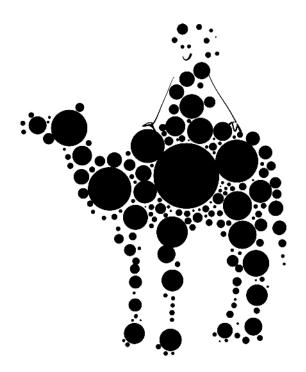
Contents

rrejace			page x	
Αc	Acknowledgments			
No	Notation			
Pa	art I	Tools and Theory	1	
1	Bac	Background		
	1.1	Basic Notation	4	
	1.2	Spaces of Sequences	5	
	1.3	Group Actions	7	
	1.4	Discrete Group Convolutions	9	
	1.5	Basic Group Notions	10	
	1.6	Measures on Groups and Harmonic Functions	26	
	1.7	Bounded, Lipschitz, and Polynomial Growth Functions	31	
	1.8	Additional Exercises	33	
	1.9	Solutions to Exercises	34	
2	2 Martingales		50	
	2.1	Conditional Expectation	51	
	2.2	Martingales: Definition and Examples	54	
	2.3	Optional Stopping Theorem	56	
	2.4	Applications of Optional Stopping	59	
	2.5	L^p Maximal Inequality	61	
	2.6	Martingale Convergence	63	
	2.7	Bounded Harmonic Functions	65	
	2.8	Solutions to Exercises	67	

viii <i>Contents</i>			
3	Mar	kov Chains	75
	3.1	Markov Chains	76
	3.2	Irreducibility	78
	3.3	Random Walks on Groups	81
	3.4	Stopping Times	81
	3.5	Excursion Decomposition	84
	3.6	Recurrence and Transience	85
	3.7	Positive Recurrence	88
	3.8	Null Recurrence	98
	3.9	Finite Index Subgroups	100
	3.10	Solutions to Exercises	108
4	Netv	vorks and Discrete Analysis	117
	4.1	Networks	118
	4.2	Gradient and Divergence	119
	4.3	Laplacian	121
	4.4	Path Integrals	121
	4.5	Voltage and Current	123
	4.6	Effective Conductance	125
	4.7	Thompson's Principle and Rayleigh Monotonicity	126
	4.8	Green Function	128
	4.9	Finite Energy Flows	132
	4.10	Paths and Summable Intersection Tails	133
	4.11	Capacity	139
	4.12	Transience and Recurrence of Groups	141
		Additional Exercises	144
	4.14	Remarks	146
	4.15	Solutions to Exercises	147
.	4 77	D 14 14 15 45	150
Pa	ırt II	Results and Applications	159
5		wth, Dimension, and Heat Kernel	161
	5.1	Amenability	162
	5.2	Spectral Radius	164
	5.3	Isoperimetric Dimension	169
	5.4	Nash Inequality	172
	5.5	Operator Theory for the Heat Kernel	174
	5.6	The Varopolous–Carne Bound	180
	5.7	Additional Exercises	184

		Contents	ix
	5.8	Remarks	184
	5.9	Solutions to Exercises	186
6	Bour	196	
	6.1	The Tail and Invariant σ -Algebras	197
	6.2	Parabolic and Harmonic Functions	198
	6.3	Entropic Criterion	202
	6.4	Triviality of Invariant and Tail σ -Algebras	207
	6.5	An Entropy Inequality	209
	6.6	Coupling and Liouville	213
	6.7	Speed and Entropy	215
	6.8	Amenability and Liouville	219
	6.9	Lamplighter Groups	220
	6.10	An Example: Infinite Permutation Group S_{∞}^*	223
	6.11	Additional Exercises	227
	6.12	Remarks	229
	6.13	Solutions to Exercises	231
7	Choquet-Deny Groups		246
	7.1	The Choquet–Deny Theorem	247
	7.2	Centralizers	249
	7.3	ICC Groups	251
	7.4	JNVN Groups	255
	7.5	Choquet-Deny Groups Are Virtually Nilpotent	257
	7.6	Additional Exercises	262
	7.7	Remarks	264
	7.8	Solutions to Exercises	265
8	The	Milnor–Wolf Theorem	273
	8.1	Growth	274
	8.2	Growth of Nilpotent Groups	275
	8.3	The Milnor Trick	280
	8.4	Characteristic Subgroups	282
	8.5	Z-extensions and Nilpotent Groups	284
	8.6	Proof of the Milnor–Wolf Theorem	290
	8.7	Additional Exercises	291
	8.8	Remarks	293
	8.9	Solutions to Exercises	293

Index


Cambridge University Press & Assessment 978-1-009-12318-1 — Harmonic Functions and Random Walks on Groups Ariel Yadin Excerpt <u>More Information</u>

X		Contents	
9	Gro	nov's Theorem	301
	9.1	A Reduction	302
	9.2	Unitary Actions	303
	9.3	Harmonic Cocycles	309
	9.4	Diffusivity	317
	9.5	Ozawa's Theorem	318
	9.6	Proof of Gromov's Theorem	328
	9.7	Classification of Recurrent Groups	330
	9.8	Kleiner's Theorem	332
	9.9	Additional Exercises	341
	9.10	Remarks	341
	9.11	Solutions to Exercises	343
Ap	pend	355	
Ap	pendi	x A Hilbert Space Background	357
	A.1	Inner Products and Hilbert Spaces	358
	A.2	Normed Vector Spaces	360
	A.3	Orthonormal Systems	361
	A.4	Solutions to Exercises	363
Appendi		x B Entropy	365
	B.1	Shannon Entropy Axioms	366
	B.2	A Different Perspective on Entropy	367
Ap	pendi	x C Coupling and Total Variation	370
	C.1	Total Variation Distance	371
	C.2	Couplings	371
	C.3	Solutions to Exercises	373
References			374

378

Preface

