Atlas of Minerals and Igneous and Metamorphic Rocks in Thin-Section

The *Atlas of Minerals and Igneous and Metamorphic Rocks in Thin-Section* provides the geology student and geoscientist with a stunning new color atlas of the main rock-forming minerals and igneous and metamorphic rocks in thin-section. It showcases minerals in various settings and degrees of alteration and preservation to allow users to best identify their own specimens in practice. Chapter 1 highlights the distinctive characteristics used to identify different minerals. Building on this base, following chapters describe rock textures and types, summarizing their petrogenesis within a plate tectonic framework. This book also includes insights into how additional information from petrographic thin-sections can be obtained using modern analytical methods to increase our understanding of geological processes. The *Atlas* is an indispensable reference textbook for all facilities that use a petrographic microscope, for professional geoscientists, and as an aid for any student studying minerals and rocks.

Alessandro Da Mommio completed his PhD in geology at the University of Milan in 2015. With a long-standing expertise in petrography since his undergraduate studies, he has developed a distinguished website dedicated to his specialty: the petrography of minerals and rocks. In 2014, one of his images secured second place in the Nikon Small World Photomicrography Competition. He's currently teaching science and mathematics.

Victoria Pease is Professor of Tectonics and Magmatism at Stockholm University. Her research focuses on Arctic tectonics. She has been teaching the next generation of geologists for more than 20 years. She sits on a number of international scientific committees and is Chief Editor of *Precambrian Research*. Victoria is co-author (with Hugh Rollinson) of the reference textbook *Using Geochemical Data: To Understand Geological Processes, Second Edition* (2021, Cambridge University Press).

> "Atlas of Minerals and Igneous and Metamorphic Rocks in Thin-Section by A. Da Mommio and V. Pease is a well-researched and easy-to-use reference. Fundamental characteristics of minerals and rocks in thin-section are combined with high-quality images that will be useful to beginners and experts alike. Thin-sections are the windows into igneous and metamorphic processes, and this atlas will become an essential component of the petrologist's toolbox."

> > Professor Wendy Bohrson, Colorado School of Mines

"The atlas contains a wealth of spectacular color photomicrographs that beautifully illustrate the essential information about minerals and rocks and provide a visual basis for identifying their textures and fabrics. Information boxes explain key aspects of mineralogy and petrology in greater detail, and application boxes provide examples of advanced techniques and broader interpretations of rock and mineral data. An indispensable reference for all geoscientists."

Professor Carol D. Frost, University of Wyoming

"Observing rocks and minerals through a petrological microscope offers a captivating experience that continues to engage both students and researchers. While each thin-section reveals a unique glimpse into the origin and formation of Earth's building blocks, a systematic approach is essential to unravel this information. *Atlas of Minerals and Igneous and Metamorphic Rocks in Thin-Section* by Alessandro Da Mommio and Victoria Pease introduces the remarkable optical shifts that occur when light rays of different wavelengths pass through crystal structures. The book explores the optical properties of common minerals found in igneous and metamorphic rocks, along with their microscopic textural relationships, enhanced by numerous beautiful color images. It will serve as a valuable resource for those beginning their studies in petrology."

Professor Sally A. Gibson, University of Cambridge

"This book is the unmistakable descendent of the classic mineralogy text of Deer, Howie, and Zussman, but is richly illustrated with beautiful photomicrographs of the minerals themselves. Collectors, students, and professionals will all enjoy and benefit from it."

Professor Robert J. Stern, University of Texas at Dallas

Atlas of Minerals and Igneous and Metamorphic Rocks in Thin-Section

Alessandro Da Mommio

University of Milan

Victoria Pease

Stockholm University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009100229

DOI: 10.1017/9781009110020

© Alessandro Da Mommio and Victoria Pease 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781009110020

First published 2025

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0 4YY

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Da Mommio, Alessandro, author. | Pease, Victoria, author.

Title: Atlas of minerals and igneous and metamorphic rocks in thin-section / Alessandro

Da Mommio, Victoria Pease.

Description: Cambridge ; New York, NY : Cambridge University Press, 2024. | Includes bibliographical references and index.

Identifiers: LCCN 2023054266 (print) | LCCN 2023054267 (ebook) | ISBN 9781009100229 (hardback) | ISBN 9781009112055 (paperback) | ISBN 9781009110020 (ebook)

Subjects: LCSH: Thin sections (Geology) | Rocks–Identification. | Rock-forming minerals–Identification. | Mineralogy, Determinative.

Classification: LCC QE434 .D36 2024 (print) | LCC QE434 (ebook) | DDC 552/.8-dc23/eng/20240105 LC record available at https://lccn.loc.gov/2023054266

LC ebook record available at https://lccn.loc.gov/2023054267

ISBN 978-1-009-10022-9 Hardback

ISBN 978-1-009-11205-5 Paperback

Additional resources for this publication at www.cambridge.org/atlas.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of Information Boxes	ix
List of Applications	х
Preface	xi
Acknowledgments	xii

Rock-Forming Minerals

1.1	Introduction	2		Tridym
1.2	Framework Silicates	10	1.3	Sheet Si
	The Feldspars			The Mica
	Plagioclase Feldspar	10		Biotite
	Alkali Feldspar			Muscov
	Anorthoclase	12		Sericite
	Microcline	13		Chlorite (
	Orthoclase	14		Prehnite
	Sanidine	16		Pyrophyll
	The Feldspathoids			The Serpe
	Kalsilite	18		Antigor
	Leucite	19		Chryso
	Nepheline	21		Lizardi
	Scapolite	23		Stilpnome
	The Sodalites			Talc
	Sodalite	24		Chain Ci
	Nosean	24	1.4	Chain Si
	Haüyne	24		The Ampl
	The Silica Minerals			Anthop
	Coesite	26		Gedrite
	Cristobalite	27		Cummi
	Quartz	28		Eckerm

	Tridymite	31
.3	Sheet Silicates	36
	The Micas	
	Biotite	36
	Muscovite	38
	Sericite	40
	Chlorite Group	41
	Prehnite	43
	Pyrophyllite	45
	The Serpentine Minerals	
	Antigorite	46
	Chrysotile	47
	Lizardite	49
	Stilpnomelane	50
	Talc	51
.4	Chain Silicates	53
	The Amphiboles	
	Anthophyllite	53
	Gedrite	53
	Cummingtonite-Grunerite	55
	Eckermannite-Arfvedsonite	57

< Contents

1

CAMBRIDGE

Cambridge University Press & Assessment 978-1-009-10022-9 – Atlas of Minerals and Igneous and Metamorphic Rocks in Thin-Section Alessandro Da Mommio , Victoria Pease Frontmatter **More Information**

> Glaucophane-Riebeckite 59 Hornblende 61 Kaersutite-Ferrokaersutite 63 Richterite-Ferrorichterite 65 Katophorite 65 Tremolite-Ferroactinolite 66 The Pyroxenes Aegirine 68 Aegirine-Augite 68 Augite-Ferroaugite 69 Diopside-Hedenbergite 71 Jadeite 73 Omphacite 74 76 Pigeonite Enstatite-Ferrosilite 77 79 Sapphirine Wollastonite 81 1.5 Disilicates, Orthosilicates, and 84 **Ring Silicates** The Aluminosilicates Andalusite 84 Kyanite 86 Sillimanite 88 Beryl 90 Chloritoid 91 Cordierite 93 The Epidotes Allanite 95 Clinozoisite 96 Epidote 97 Piemontite 99 Zoisite 100 The Garnets Almandine 101 Andradite 103 Grossular-Hydrogrossular 104 Pyrope 105

> > 106

	Uvarovite	107
	Lawsonite	108
	The Melilites	
	Gehlenite	109
	Åkermanite	109
	The Olivines	
	Forsterite-Fayalite	111
	Monticellite	113
	Pumpellyite	115
	Staurolite	117
	Titanite	119
	Topaz	120
	Tourmaline	121
	Zircon	122
1.6	Nonsilicates	125
	The Carbonates	
	Aragonite	125
	Calcite	126
	Dolomite	128
	Magnesite	129
	Siderite	130
	The Halides	
	Fluorite	131
	The Oxides and Hydroxides	
	Brucite	133
	Cassiterite	134
	Corundum	137
	Perovskite	139
	Rutile	141
	Spinel Group	143
	The Phosphates	1.45
	Apatite	145
	Monazite Xenotime	147 149
		149
	The Sulfates	150
	Barite Pibliography	150
	Bibliography	154

Spessartine

Igneous Rocks

2.1	Introduction	158
	Textures of Igneous Rocks	158
	Naming Igneous Rocks	158
2.2	Crystallinity	163
2.3	Granularity	164
	Phaneritic	164
	Equigranular	164
	Aphanitic	168
2.4	Crystal Form	171
	Crystal Faces	171
	Crystal Shapes	171
2.5	Mutual Relations of Crystals	175
	Granular Textures	175
	Inequigranular Textures	176
	Oriented Textures	182
	Banded Textures	187
	Intergrowth Textures	190
	Radiate Textures	193
	Overgrowth Textures	196
	Cavity Textures	199
2.6	Plutonic Rocks	201
	Ultramafic Rocks	
	Peridotites	
	Lherzolite	202
	Wehrlite	204
	Harzburgite	206
	Dunite	208
	Pyroxenites	
	Clinopyroxenite	210
	Olivine Clinopyroxenite	212
	Websterite	213
	Olivine Websterite	214
	Orthopyroxenite	215
	Olivine Orthopyroxenite	217
	Gabbroic Rocks	
	Diorite	220
	Gabbro	222

	Norite	224
	Troctolite	226
	Anorthosite	228
	Syenitic Rocks	
	Monzogabbro-Monzodiorite	230
	Monzonite	232
	Syenite	234
	Alkali Feldspar Syenite	236
	Granitic Rocks	
	Tonalite	239
	Granodiorite	240
	Granite	244
	Alkali Feldspar Granite	246
	Feldspathoid Rocks	
	Foid-Bearing Rocks	248
	Foid Rocks	250
	Foidolite	252
2.7	Volcanic Rock Types	254
	Silica: (Over)saturated	
	Basalt	254
	Basaltic Andesite	256
	Andesite	258
	Trachyandesite	260
	Trachyte	262
	Dacite	264
	Rhyolite	266
	Silica: Undersaturated	
	Basanite/Tephrite	270
	Phonotephrite-Tephriphonolite	
		272
	Phonolite	274
	Phonolite Foidite	
	Phonolite Foidite Glassy Rocks	274 276
	Phonolite Foidite Glassy Rocks Obsidian	274 276 278
	Phonolite Foidite Glassy Rocks Obsidian Pitchstone	274 276
	Phonolite Foidite Glassy Rocks Obsidian Pitchstone Tuffaceous Rocks, Welded and	274 276 278 280
	Phonolite Foidite Glassy Rocks Obsidian Pitchstone	274 276 278

Contents

vii

Metamorphic Rocks

ts	
ЭN	
ηte	
õ	
\circ	

v	F	Ē	
v	H	H	

3.1	Introduction	294	Greenschist Facies	337
3.2	Metamorphic Textures	297	Amphibolite Facies Granulite Facies	339 343
	Grain Size and Shape	297	Blueschist Facies	343 345
	Acicular	297	Eclogite Facies	347
	Augen	297	Hornfels Facies	349
	Granoblastic Textures: Decussate	298		
	Granoblastic Textures: Polygonal	299	3.4 Metamorphic Rocks	354
	Porphyroblasts	300	Root	
	Porphyroclasts	302	Schist	354
	Strain/Pressure Shadows	303	Gneiss	356
	Deformation Fabrics	305	Granofels	358
	Deformation Twins	305	Protolith	
	Foliation and Schistosity	307	Slate	362
	Crenulation Cleavage	309	Phyllite	364
	Kink Bands	312	Spilite	366
	Poikiloblasts and Poikiloclasts	313	Serpentinite	368
	Ribbons	316	Hornfels	370
	Stylolites	319	Quartzite	374
	Veins and Strain Fringes	322	Greenschist	376
	Reaction and Disequilibrium Textures	324	Amphibolite	378
	Atoll	324	Granulite	380
	Zoning	327	Blueschist	382
~ ~			Eclogite	384
3.3	Metamorphic Facies	330	Migmatite	386
	Zeolite Facies	333	Bibliography	389
	Prehnite–Pumpellyite Facies	335		
Inde:	x	391		

CAMBRIDGE

Cambridge University Press & Assessment 978-1-009-10022-9 — Atlas of Minerals and Igneous and Metamorphic Rocks in Thin-Section Alessandro Da Mommio , Victoria Pease Frontmatter <u>More Information</u>

Information Boxes

1.1	Feldspar Solid Solution	17
1.2	Polymorphism	30
1.3	The Zeolites	34
1.4	Olivine Alteration	114
1.5	The Fe–Ti Oxides	140
1.6	The Sulfides	142
2.1	Nucleation and Crystal Growth	167
2.2	Textures Related to Rapid Cooling	170
2.3	Embayment and Resorption	174
2.4	Symplectites and Myrmekites	189
2.5	Exsolution in Igneous Rocks	192
2.6	Magmatic Zoning	195
2.7	Opacite Rims	198
2.8	Describing Igneous Rocks	238
2.9	Pegmatites	249
2.10	Crystal Cargo	257
3.1	Pseudomorphs	304
3.2	Boudinage and Microboudinage	306
3.3	Foliation Terminology	311
3.4	Lineations	315
3.5	Reaction Rims and Epitaxy	325
3.6	Symplectites	326
3.7	Exsolution in Metamorphic Rocks	329
3.8	Metamorphic Zones	332
3.9	Transport and Diffusion	341
3.10	Fluids, Temperature, and Metamorphism	342
3.11	Cataclasite, Mylonite, and Pseudotachylite	372
3.12	Marble	373
3.13	Skarn Formation	388

xi Information Boxes

Applications

1.1	Common Polymorphs	32
1.2	Imaging Minerals in Thin-Section	82
1.3	Thermobarometry	123
1.4	Temperature and Oxygen Fugacity Using Fe–Ti Oxides	135
1.5	Geochronology	151
2.1	Melt Generation from Mantle Rocks	218
2.2	Composition, Zoning, and Magmatic Processes	242
2.3	Crystal Size Distribution Analysis	268
2.4	Crustal Anatexis	284
3.1	Shear Sense Indicators	317
3.2	Stylolites as Strain Markers and Conduits for Diagenetic Fluids	320
3.3	Pressure and Temperature Paths	351
3.4	Time and P-T Paths	360

Preface

Determining what is a "common" versus "uncommon" mineral is somewhat subjective. We tend to be inclusive; for example, insofar as a mineral such as kalsilite may be relatively rare, it is not uncommon in its normal paragenesis – that is, unusual ultra-high-K rocks – and so we include it here. Given that our intended audience is not just undergraduates but also advanced students and beyond, we feel this is warranted.

We have depended on the foundational work of Deer, Howie, and Zussman (DHZ) throughout our careers and have continued to do so for much of the optical information included in Chapter 1. We cannot stress enough the value of their work. For the student who anticipates utilizing petrography beyond their undergraduate education, DHZ provide a wealth of information on recognition, characterization, experimentation, and paragenesis of the rock-forming minerals well beyond that conveyed here, and we highly recommend it as a life-long reference.

Chapter 1 focuses on the minerals found in igneous and metamorphic rocks. Chapter 2 combines these minerals with the textures of igneous rocks and introduces the rocks themselves, following the naming conventions of the International Union of Geological Sciences (IUGS). Chapter 3 addresses the minerals, textures, and fabrics of metamorphic rocks, as well as the rocks themselves, and broadly follows IUGS naming conventions, although we acknowledge that this is not necessarily the most widely adopted nomenclature at present.

Each chapter provides more detailed information on minerals, textures, and rocks in the form of *information boxes*, while *applications* explore how the information gleaned from the petrographic evaluation of thin-sections can be used to further our understanding of mineraland rock-forming processes – that is, how what you see in a thin-section can be applied. Relevant textbooks and references are given at the end of each chapter, allowing those interested to delve more deeply into a given topic.

The observations and textural descriptions of minerals and their relationships in rock thinsections is a fundamental part of geology and a necessary foundation for most of today's more advanced applications, from geochronology to pressure-temperature-time paths. It is amazing to us how a simple petrographic microscope provides such a wealth of information – its scientific added value is completely disproportionate to this relatively inexpensive investigative tool!

We hope you enjoy looking at minerals and rocks under the microscope as much as we have enjoyed sharing them with you.

Acknowledgments

ADM wishes to acknowledge help and encouragement from Aku P. Heinonen, Alberto Zanetti, Alessandra Montanini, Alessandro Zara, Andy Tindle, Anton Chakhmouradian, Axel Sjoqvist, Bernardo Cesare, Cherfi Youcef, Chiara Groppo, Chiara Montomoli, Christian Biagioni, Dalila Grilli, David Alderton, David P. West, David Sherrod, Enrique Gómez Rivas, Fabrizio Innocenti, Flavio Milazzo, Francesco Stoppa, Gianluca Sessa, Giovanni Grieco, Haakon Fossen, Hans-Peter Schertl, Hermes García, Hildegard Wilske, James Connelly, James St. John, John Booth, John Bowles, John W. Goodge, Kevin Walsh, Leone Melluso, Marco Filippi, Marco Merlini, Marco Pistolesi, Marilena Moroni, Massimo D'Orazio, Mattia Bonazzi, Michael C. Lesher, Michele Zucali, Micol Bussolesi, Mikhail Sidorov, Miłosz Huber, Nicoletta Marinoni, Niels Jöns, Olga Ageeva, Patrizia Fumagalli, Pietro Vignola, Rodolfo Carosi, Salvatore Iaccarino, Samuele Papeschi, Sarah J. Barnes, Sergio Rocchi, Simone Tumiati, Simone Vezzoni, Stefan Marincea, Stefano Poli, Teresa Trua, Thair Al-Ani, Valentine Troll, Valeria Caironi, Victor Cardenes, William S. Cordua.

VP thanks everyone who provided images for this project and her undergraduate microscopy instructors, Tom, Dan, and Patrick, whose enthusiasm inspired her own love of minerals and rocks under the microscope. Thanks also to Martin for his support - he seldom complained about the seemingly endless commentary during this project!