

A PRACTICAL APPROACH TO SUPPORTING SCIENCE AND ENGINEERING STUDENTS WITH SELF-REGULATED LEARNING

Science and engineering practices tend to be more difficult to teach and monitor than content knowledge, because practices are skill based. This book presents tangible ways for teacher educators and teachers to design learning environments that involve student goal setting, monitoring, and reflection on their performance of science and engineering practices. It models ways teachers can support effective learning behaviors and monitor student progress in science and engineering practices. It also presents practical ways to set up preservice teacher instruction and inservice teacher professional development that address both self-regulated learning and science and engineering practices. Educational research designs are presented from qualitative, quantitative, and mixed methods traditions that investigate student and teacher engagement with science and engineering practices through self-regulated learning.

ERIN E. PETERS-BURTON is Professor at George Mason University, USA, and Director of the Center for Social Equity through Science Education. She taught at secondary school for fifteen years prior to her academic work. She has published in science education, teacher education, educational psychology, marine biology, geology education, philosophy of science, technology, educational leadership, and learning disability journals. In 2016, she was named the ASTE Outstanding Science Teacher Educator of the Year.

A PRACTICAL APPROACH TO SUPPORTING SCIENCE AND ENGINEERING STUDENTS WITH SELF-REGULATED LEARNING

ERIN E. PETERS-BURTON

George Mason University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009100014

DOI: 10.1017/9781009103800

© Erin E. Peters-Burton 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data NAMES: Peters-Burton, Erin E., author.

TITLE: A practical approach to supporting science and engineering students with self-regulated learning / Erin E. Peters-Burton, George Mason University.

DESCRIPTION: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2023. | Includes bibliographical references and index.

IDENTIFIERS: LCCN 2023002771 (print) | LCCN 2023002772 (ebook) | ISBN 9781009100014 (hardback) | ISBN 9781009108270 (paperback) | ISBN 9781009103800 (epub) SUBJECTS: LCSH: Science–Study and teaching (Secondary) | Engineering–Study and teaching

(Secondary) | Self-managed learning. | Self-culture.

CLASSIFICATION: LCC Q181 .P3557 2023 (print) | LCC Q181 (ebook) |

DDC 507.1/2-dc23/eng20230508

LC record available at https://lccn.loc.gov/2023002771 LC ebook record available at https://lccn.loc.gov/2023002772

> ISBN 978-1-009-10001-4 Hardback ISBN 978-1-009-10827-0 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

I would like to dedicate this book to my wonderful husband, Stephen, who not only supported me emotionally while I wrote, but had lots of conversations with me about science practices.

Contents

	of Figures	page ix
List of Tables		X
Ack	Acknowledgments	
PAR	RT I FOUNDATIONS	
I	Student Engagement in Science and Engineering Practices	3
2	Unpacking Science and Engineering Practices	13
3	Self-Regulated Learning	28
PAR	RT II ENGAGING IN DISCIPLINARY TASKS IN SCIENCE	
ANI	D ENGINEERING	
4	Asking Questions and Defining Problems	47
5	Developing and Using Models	66
6	Planning and Carrying Out Investigations	88
7	Analyzing and Interpreting Data	110
8	Mathematics and Computational Thinking	131
9	Constructing Explanations and Designing Solutions	143
10	Engaging in Argument from Evidence	164
ΙΙ	Evaluating and Communicating Information	185

viii	Contents	
	T III EDUCATIONAL RESEARCH AND TEACHER UCATION APPLICATIONS	
12	Professional Development Designs	209
13	Planning Lessons with Embedded Self-Regulated Learning Using the 5E Format	228
14	Research Designs for Examining Science and Engineering Practices and SRL	241
References Index		255 262

Figures

I.I	Relationship of science and engineering practices with	
	content and epistemic knowledge	page 9
2.I	Connections between engineering design processes and	
	engineering practices	23
3.I	Phases and sub-processes in self-regulated learning theory	30
4. I	SRL processes for asking questions and defining problems	54
5.I	SRL processes for developing and using models	76
5.2	Diagram of electrolysis apparatus setup	79
6.1	SRL processes for planning and carrying out investigations	98
7 . I	SRL processes for analyzing and interpreting data	119
8.1	Integration of computational thinking with data practices	133
8.2	SRL processes for mathematical and computational	
	thinking	134
9.1	SRL processes for constructing explanations and	
	designing solutions	152
10.1	SRL processes for engaging in arguments using evidence	174
II.I	SRL processes for evaluating and communicating	
	information	195
12.1	Progression of instruction for scientific argumentation	
	professional development	227
14.1	Maxwell's research design diagram	242
14.2	Research design diagram for case study	244
14.3	Research design diagram for quantitative comparison study	249
14.4	Research design diagram for mixed methods study	2.5 I

Tables

2.I	Relationships between science practices and nature of	
	science aspects	page 17
2.2	Relationships between engineering practices and nature	
	of engineering aspects	20
2.3	Task analysis table with an example activity	25
8.1	Abeer's data table	140
12.1	Topics, goals, and format for professional development	
	on learning how to teach earth science through inquiry	
	for grades K-5 by week	220
12.2	List of objectives and activities from a thirty-two-hour	
	professional development program focused on learning	
	argumentation and teaching argumentation in science	224
13.1	Connections between the 5E model of curriculum design	
-	and SRL phases	234
T 2 2	Task analysis of pendulums investigation	230

Acknowledgments

I would like to thank the Science Practices Innovation Notebook research team and teacher team. Without them I wouldn't have been able to have in-depth discussions about teaching science and engineering practices for the past five years. Thanks to Tim, Peter, Anastasia, Erin B., Erin W., Laura, Jake, Zach, Steph, Jessica, Connor, Hong, Britt, Suzanne, Matthew, Kat, Kevin, Lisa, Kim, Haley, Angela, Melissa, Charmaine, Emily, Candace, Swapna, Katie, and Jin. I am deeply grateful for being able to work with you all. Thanks, too, to my farm animals: Piobar, Chester, Mallow, Gusty, Noisy, Hank, Fia, Gabhy, Stormy, Bridget, and the chickens for spending my breaks between chapters with me.