Semiconductor Laser Photonics

This modern text provides detailed coverage of the important physical processes underpinning semiconductor devices. Advanced analysis of the optical properties of semiconductors without the requirement of complex mathematical formalism allows clear physical interpretation of all obtained results. The book describes fundamental aspects of solid-state physics and the quantum mechanics of electron–photon interactions, in addition to discussing in detail the photonic properties of bulk and quantum well semiconductors. The final six chapters focus on the physical properties of several widely used photonic devices, including distributed feedback lasers, vertical cavity surface-emitting lasers, quantum dot lasers, and quantum cascade lasers. This book is ideal for graduate students in physics and electrical engineering, and a useful reference for optical scientists.

Mauro Nisoli is Professor of Physics and Photonics at Politecnico di Milano, where he leads the Attosecond Research Center. His research is focused on attosecond science and ultrafast phenomena in matter. He has published more than 200 research papers in international journals and several physics textbooks.
Semiconductor Laser Photonics

Second Edition

MAURO NISOLI
Politecnico di Milano
To Margherita,
Matilde, and Kim
Contents

Preface

1 Band Structure of Semiconductors
 1.1 Crystals, Lattices, and Cells
 1.2 The Reciprocal Lattice
 1.3 Electrons in a Periodic Crystal
 1.4 The Concept of Effective Mass
 1.5 Energy Bands
 1.6 Calculation of the Band Structure
 1.7 The k · p Method
 1.8 Bandstructures of a Few Semiconductors
 1.9 Exercises

2 Electrons in Semiconductors
 2.1 Introduction
 2.2 Periodic Boundary Conditions
 2.3 Density of States
 2.4 Carrier Statistics in Semiconductors
 2.5 Mass-Action Law
 2.6 Doped Semiconductors
 2.7 Quasi-Fermi Levels in Nonequilibrium Systems
 2.8 Charge Transport in Semiconductors
 2.9 Diffusion Current
 2.10 Exercises

3 Basic Concepts of Quantum Mechanics
 3.1 Quantum Mechanics Fundamentals
 3.2 Time-Dependent Perturbation Theory
 3.3 Properties of Operators: A Short Summary
 3.4 The Density Matrix
 3.5 Exercises
Contents

4 Electron–Photon Interaction 98
- 4.1 Introduction 98
- 4.2 Classical Electromagnetic Theory 98
- 4.3 Electrons in an Electromagnetic Field 101
- 4.4 Electric Dipole Approximation 104
- 4.5 Linear Optical Susceptibility 105
- 4.6 From Optical Susceptibility to Absorption Coefficient 109
- 4.7 Momentum of an Electron in a Periodic Crystal 111
- 4.8 Exercises 114

5 Optical Properties of Semiconductors 116
- 5.1 Stimulated Transitions: Selection Rules 116
- 5.2 Joint Density of States 117
- 5.3 Susceptibility and Absorption Coefficient in a Semiconductor 119
- 5.4 Gain Coefficient and Bernard–Duraffourg Condition 124
- 5.5 Spontaneous Emission 125
- 5.6 Nonradiative Recombination 132
- 5.7 Competition between Radiative and Nonradiative Recombination 144
- 5.8 Exercises 145

6 Quantum Wells 148
- 6.1 Introduction 148
- 6.2 Electronic States 149
- 6.3 Density of States 155
- 6.4 Electron Density 156
- 6.5 Transition Selection Rules 157
- 6.6 Absorption and Gain in a Quantum Well 160
- 6.7 Intersubband Absorption 164
- 6.8 Strained Quantum Wells 166
- 6.9 Transparency Density and Differential Gain 173
- 6.10 Excitons 176
- 6.11 Exercises 185

7 Light Emitting Diodes 188
- 7.1 Basic Concepts 188
- 7.2 Double-Heterostructure LEDs 191
- 7.3 Carrier Leakage over Barrier 196
- 7.4 External Efficiency of a LED 198
- 7.5 Emission Pattern of a LED 201
- 7.6 Luminous Efficiency 202
- 7.7 Blue LED 204
- 7.8 Exercises 207
8 Semiconductor Lasers 211
 8.1 Introduction 211
 8.2 Rate Equations and Threshold Conditions for Laser Action 212
 8.3 Temperature Dependence 220
 8.4 Output Power 220
 8.5 Quantum Well Lasers 222
 8.6 Laser Structures 225
 8.7 Spectral and Spatial Characteristics of Diode Laser Emission 227
 8.8 Exercises 228

9 Quantum Dot Lasers 232
 9.1 Introduction 232
 9.2 Fabrication Techniques of QDs 233
 9.3 General Scheme of QD Lasers 235
 9.4 Electronic States in QDs 236
 9.5 Carrier Statistics in QDs 244
 9.6 Optical Transitions 246
 9.7 Absorption Spectrum 247
 9.8 Gain in QDs 250
 9.9 Threshold Current Density 251
 9.10 Additional Advantages of QD Lasers 255
 9.11 Exercises 257

10 Distributed Feedback Lasers 258
 10.1 Basic Concepts 258
 10.2 Coupled-Mode Theory 262
 10.3 DFB Laser with Uniform Grating 266
 10.4 DFB Laser with λ/4-Shifted Grating 270
 10.5 Distributed Bragg Reflector (DBR) Laser 271
 10.6 MATLAB Program: Characteristics of a DFB Laser 273
 10.7 Exercises 278

11 Vertical Cavity Surface-Emitting Lasers 281
 11.1 Basic Structure 281
 11.2 Threshold Conditions 281
 11.3 DBR for VCSELs 284
 11.4 Threshold Conditions and Current Confinement 287
 11.5 Advantages and Applications 289
 11.6 Exercises 289
<table>
<thead>
<tr>
<th>12 Quantum Cascade Lasers</th>
<th>293</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Quantum Cascade Lasers</td>
<td>293</td>
</tr>
<tr>
<td>12.2 Gain Coefficient</td>
<td>295</td>
</tr>
<tr>
<td>12.3 Rate Equations and Threshold Conditions</td>
<td>296</td>
</tr>
<tr>
<td>12.4 Output Power, Slope-, and Wall-Plug Efficiency</td>
<td>299</td>
</tr>
<tr>
<td>12.5 Numerical Example</td>
<td>302</td>
</tr>
<tr>
<td>12.6 Applications</td>
<td>304</td>
</tr>
</tbody>
</table>

Appendix 306
References 307
Index 309
The term photonics was introduced in the late 1960s by Pierre Aigrain, who gave the following definition: “Photonics is the science of the harnessing of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation and amplification and, most importantly, its utilisation for the benefit of mankind.” In the last three decades impressive progress in the field of photonics has been achieved, thanks to remarkable advances in the understanding of the physical processes at the heart of light–matter interaction in photonic applications and to the introduction of crucial technological innovations. Photonics is an extremely wide field, as clearly demonstrated by the above definition, since it refers to all types of technological device and process, where photons are involved.

This book does not aim to analyze all aspects of photonics: A few excellent textbooks already exist, which present several topics relevant for photonic applications. The aim of this book is to introduce and explain important physical processes at the heart of the optical properties of semiconductor devices, such as light emitting diodes (LEDs) and semiconductor lasers. It is suitable for a half-semester (or a single-semester) course in Photonics or Optoelectronics at graduate level in engineering physics, electrical engineering, or material science. It originated from the graduate course of Photonics I have been teaching at the Politecnico di Milano since 2006. The concepts of solid-state physics and quantum mechanics, which are required to understand the subjects discussed in this book, are addressed in the introductory chapters. It is assumed that the reader has had courses on elementary quantum mechanics, solid-state physics, and electromagnetic theory at the undergraduate level.

The book presents a selection of topics, which I consider essential to understand the operation of semiconductor devices. It offers a relatively advanced analysis of the photophysics of semiconductors, trying to avoid the use of exceedingly complex formalisms. Particular attention was devoted to offer a clear physical interpretation of all the obtained results. Various worked examples are added throughout all the chapters to illustrate the application of the various formulas: The solved exercises are evidenced by the colored boxes in the text. The numerical examples are also important since they allow the reader to have a direct feeling of the order of magnitude of the parameters used in the formulas discussed in the text. The gray boxes contain concise discussions of supplementary topics or more advanced derivations of particular results reported in the main text, which may not be easily derived by the reader.

Semiconductor Laser Photonics is organized as follows. Chapter 1 focuses on the description of a few concepts of solid-state physics, which are relevant for the calculation and analysis of the band structure of semiconductors. The Bloch theorem is introduced,
which describes the wavefunction of electrons in periodic structures. The tight-binding method is considered, with a few simple examples, and the $\mathbf{k} \cdot \mathbf{p}$ method, which are used to calculated the band structure of semiconductors. Chapter 2 deals with the discussion of the main properties of charged particles (electrons and holes) in intrinsic and doped semiconductors. The density of states is first calculated and the essential concepts of carrier statistics in semiconductors are discussed. Basic concepts of quantum mechanics are contained in Chapter 3. In particular, the density matrix formalism is introduced, which is used in the book for the calculation of the optical susceptibility of a semiconductor. After a very short overview of essential aspects of classical electromagnetic theory, Chapter 4 analyzes the interaction of electrons with an electromagnetic field. The expressions of the interaction Hamiltonian, which are extensively used throughout the book, are derived in this chapter. Chapters 5 and 6 build on the previous chapters. In particular, Chapter 5 deals with the optical properties of bulk semiconductors, that is, semiconductors with spatial dimensions much larger than the de Broglie wavelength of the electrons involved in the relevant physical processes. Absorption and gain coefficients are calculated and the radiative and nonradiative recombination processes in semiconductors are analyzed. Chapter 6 analyzes the principles of the photophysics in semiconductor quantum wells, that is, in semiconductor structures where the electrons are confined in one direction by a potential well, with a thickness smaller than the electron de Broglie wavelength.

In the remaining six chapters the general results obtained in the first part of the book are applied to the investigation of the main optical properties of semiconductor devices: light-emitting diodes and lasers. The general philosophy adopted in these chapters is the following: The fundamental physical processes are investigated, rather than the technological characteristics of the devices. After a short and general analysis of semiconductor lasers in Chapter 8, based on the rate equation approach, Chapter 9 is devoted to the analysis of the optical properties of quantum dots, where three-dimensional quantum confinement leads to peculiar properties, which have been used for the development of quantum dot lasers. Chapter 10 contains a detailed theoretical analysis of the distributed feedback (DFB) lasers, based on the use of the coupled-mode equations. By using a simple perturbative approach, the threshold laser conditions are obtained. Vertical cavity surface-emitting lasers (VCSELs) and Quantum cascade lasers are analyzed in the final two chapters.