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1 Band Structure of Semiconductors

1.1 Crystals, Lattices, and Cells

A crystal is composed of a periodic repetition of identical groups of atoms: A group is

called basis. The corresponding crystal lattice is obtained by replacing each group of atoms

by a representative point, as shown in Fig. 1.1. A crystal can also be called lattice with a

basis. When the basis is composed of a single atom, the corresponding lattice is called

monoatomic. In a Bravais lattice, the position R of all points in the lattice can be written

as :

R = n1a1 + n2a2 + n3a3, (1.1)

where a1, a2, and a3 are three noncoplanar translation vectors called the primitive vectors,

and n1, n2, and n3 are arbitrary (positive or negative) integers. We note that for a given

Bravais lattice, the choice of the primitive vectors is not unique. The Bravais lattice looks

exactly the same when viewed from any lattice point. Not only the arrangement of points

but also the orientation must be exactly the same from every point in a Bravais lattice. No

rotations are needed to reach each lattice point. Therefore, two points in the lattice, whose

position vectors are given by r and r′ = r + R, are completely equivalent environmentally.

For example, the two-dimensional honeycomb lattice as shown in Fig. 1.2 is not a Bravais

lattice. Indeed, the lattice looks the same when it is viewed from points A and C, but

not when it is viewed from point B: In this case, the lattice appears rotated by 180◦. We

note that, for example, graphene consists of a single layer of carbon atoms arranged in a

two-dimensional honeycomb structure.

A lattice can be constructed by infinite repetitions, by translations, of a single cell with-

out any overlapping. This cell can be primitive or nonprimitive (or conventional). Primitive

and conventional cells are not uniquely determined, as clearly illustrated in Fig. 1.3. The

primitive cell has the minimum possible volume, given by

(a) (b) (c)

�Figure 1.1 (a) Basis composed of two different atoms, (b) bidimensional crystal, and (c) corresponding lattice.

1

www.cambridge.org/9781009098748
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-09874-8 — Semiconductor Laser Photonics
Mauro Nisoli 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Chapter 1 Band Structure of Semiconductors
�
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�Figure 1.2 A two-dimensional honeycomb lattice is not a Bravais lattice.
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�Figure 1.3 Two-dimensional lattice: cells 1, 2, and 3 are primitive cells. Cell 4 is not primitive.

Vu = a1 · (a2 × a3), (1.2)

and contains exactly one lattice point. Therefore, in Fig. 1.3, which refers to a two-

dimensional case, the cells 1–3 are all primitive cells: They have the same area and contain

4 · 1
4

= 1 lattice point. The primitive cell contains the minimum possible number of atoms,

and there is always a lattice point per primitive cell. Cell 4 is not primitive: Its area is twice

the area of the primitive cell and contains 4 · 1
4
+2 · 1

2
= 2 lattice points. Not all points in the

lattice are linear combinations of a
(3)
1 and a

(3)
2 with integral coefficients (a

(3)
1 and a

(3)
2 are not

the primitive vectors). In some cases, it is more convenient to consider conventional unit

cells, with larger volumes (integer multiple of that of the primitive cell) but characterized

by the same symmetry of the lattice.

Without entering into any detail about group theory, we can say that all the possible

lattice structures are determined by the symmetry group that describes their properties. A

lattice structure can be transformed into itself not only by the translations described by

Eq. 1.1, which define the translational group, but also by many other symmetry operations.

The symmetry operations transforming a lattice into itself keeping at least one point fixed

form a group called the point group. In the case of three-dimensional structures, the point

symmetry gives rise to 14 types of lattices, which can be classified depending on the rela-

tionships between the amplitudes of the vectors ai and the angles α, β, and γ between them.
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3 1.1. Crystals, Lattices, and Cells
�

Table 1.1 The 14 lattice systems in three dimensions (the last column shows
the amplitudes ai and the angles between vectors ai of the unit cell).

System Number of lattices Amplitudes ai and angles

Triclinic 1 a1 �= a2 �= a3

α �= β �= γ

Monoclinic 2 a1 �= a2 �= a3

α = γ = 90◦, β �= 90◦

Orthorhombic 4 a1 �= a2 �= a3

α = β = γ = 90◦

Tetragonal 2 a1 = a2 �= a3

α = β = γ = 90◦

Cubic 3 a1 = a2 = a3

α = β = γ = 90◦

Trigonal 1 a1 = a2 = a3

α = β = γ < 120◦, �= 90◦

Hexagonal 1 a1 = a2 �= a3

α = β = 90◦, γ = 120◦

sc bcc fcc

�Figure 1.4 Cubic lattices: (sc) simple cubic, (bcc) body-centered cubic, and (fcc) face-centered cubic.

As reported in Table 1.1, the 14 types of lattices can be grouped in one triclinic, two mon-

oclinic, four orthorhombic, two tetragonal, three cubic, one trigonal, and one hexagonal

lattices.

Many semiconductors are characterized by a cubic lattice or by an hexagonal lattice.

There are three types of cubic lattices: simple cubic (sc), body-centered cubic (bcc), and

face-centered cubic (fcc), whose unit cells are shown in Fig. 1.4. Note that only the sc is a

primitive cell, with volume a3 and one lattice point per cell (8 × 1
8
). The bcc lattice can be

obtained from the sc by placing a lattice point at the center of the cube. The conventional

cell is the cube with edge a. It has two lattice points per unit cell (8 × 1
8

+ 1). In terms of

the cube edge a, a set of primitive vectors can be written as:

a1 =
a

2
(ux + uy − uz)

a2 =
a

2
( − ux + uy + uz)

a3 =
a

2
(ux − uy + uz), (1.3)
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4 Chapter 1 Band Structure of Semiconductors
�
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�Figure 1.5 Set of primitive vectors for a body-centered cubic lattice.
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�Figure 1.6 Primitive vectors and primitive cell of the face-centered cubic lattice.

where ux, uy, and uz are the unit vectors of the x, y, and z axes, as shown in Fig. 1.5.

The corresponding primitive cell, with volume a3/2, contains by definition only one lattice

point. This primitive cell does not have an obvious relation with the point symmetry (cubic)

of the lattice. For this reason, it is useful to consider a unit cell larger than the primitive cell

and with the same symmetry of the crystal. For a bcc lattice, the unit cell is a cube with

edge a, with a volume which is twice the volume of the primitive cell. The bcc lattice can

also be considered as an sc lattice with a two-point basis 0, (a/2)(ux + uy + uz).

The fcc Bravais lattice can be obtained from the sc lattice by adding a point in the center

of each face. The fcc structure has lattice points on the faces of the cube, so that they are

shared between two cells: The total number of lattice points in the cell is 4 (8 × 1
8
+6× 1

2
).

A particular set of primitive vectors is (see Fig. 1.6):

a1 =
a

2
(uy + uz)

a2 =
a

2
(uz + ux)

a3 =
a

2
(ux + uy). (1.4)
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5 1.1. Crystals, Lattices, and Cells
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�Figure 1.7 (a) Crystal structure of diamond; the solid lines show the tetrahedral bond geometry; (b) atomic position in the cubic

cell projected on a cube face. The fractions correspond to the height above the cube face in the unit of the cube edge

a; the black and gray circles correspond to the two interpenetrating fcc lattices, which generate the diamond

structure.

The primitive cell has a volume of a3/4 and contains one lattice point. Also in this case,

the unit cell is generally assumed as a cube of edge a, with a volume which is four times

the volume of a primitive cell. The fcc can be described as an sc lattice with a four-point

basis 0, (a/2)(ux +uy), (a/2)(uy +uz), (a/2)(uz +ux). We recall that the numbers giving the

size of the unit cell (e.g., the number a in the case of a cubic crystal) are called the lattice

constants.

Many important semiconductors, for example, silicon and germanium, have a diamond

structure, which is the lattice formed by the carbon atoms in a diamond crystal. This struc-

ture consists of identical atoms that occupy the lattice points of two interpenetrating fcc

lattices, which are displaced from each other along the body diagonal of the cubic cell by

one quarter the length of the diagonal, as shown in Fig. 1.7. It can be seen as an fcc lattice

with a two-point basis 0, (a/4)(ux + uy + uz). The four nearest neighbors of each point

are on the vertices of a regular tetrahedron. Note that the diamond lattice is not a Bravais

lattice, since it does not look exactly the same when it is viewed from the two nearest-

neighbor points. Since the unit cell of an fcc structure contains four lattice points, the unit

cell of the diamond structure contains eight lattice points. In this case, it is not possible to

choose a primitive cell in such a way that the basis of diamond contains only one atom.

When the atoms that occupy one of the two fcc structures are different from the atoms oc-

cupying the other, the structure is called the zinc–blende structure. Several semiconductors

are characterized by this structure, such as GaAs, AlAs, and many others.

Largely used semiconductors, such as GaN, AlN, BN, and SiC, have a hexagonal close-

packet (hcp) structure (wurtzite structure) as shown in Fig. 1.8. Also, the hcp lattice is not

a Bravais lattice. This lattice can be seen as two interpenetrating simple hexagonal Bravais

lattices, displaced vertically by c/2 in the direction of the common c-axis and displaced
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6 Chapter 1 Band Structure of Semiconductors
�

c

�Figure 1.8 Atomic position in the hcp lattice.
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�Figure 1.9 Simple hexagonal Bravais lattice.

in the horizontal plane in such a way that the points of one simple hexagonal lattice are

placed above the centers of the triangles formed by the points of the other simple hexagonal

lattice. Figure 1.9 shows a simple hexagonal Bravais lattice, which is obtained by stacking

two-dimensional triangular Bravais lattices – one exactly above the other along a direction

perpendicular to each two-dimensional lattice. This stacking direction is usually called the

crystallographic c-axis. The primitive vectors can be written as:

a1 = aux

a2 =
a

2
ux +

√
3

2
auy

a3 = cuz. (1.5)

1.1.1 TheWigner–Seitz Cell

The primitive cell can also be chosen in such a way that it presents the full symmetry

of the Bravais lattice. This can be achieved by considering the Wigner–Seitz cell. The

mathematical definition is as follows: The Wigner–Seitz cell around a given lattice point

is the spatial region that is closer to that particular lattice point than to any other lattice

points. It can also be demonstrated that the Wigner–Seitz cell is a primitive cell. While for

any given lattice there is an infinite number of possible primitive cells, there is only one

Wigner–Seitz cell. The above definition does not refer to any particular choice of primitive
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7 1.2. The Reciprocal Lattice
�

(a) (b) (c)

P

�Figure 1.10 Construction of the Wigner–Seitz cell of a two-dimensional rectangular lattice.

vectors; for this reason, the Wigner–Seitz cell is as symmetrical as the Bravais lattice.

The procedure for the construction of a Wigner–Seitz cell can be illustrated in the simple

case of a two-dimensional rectangular lattice, as shown in Fig. 1.10(a). To determine the

Wigner–Seitz cell about the lattice point P, we have first to draw the lines from P to all of its

nearest neighbors (Fig. 1.10(b)) and then the bisectors to each of these lines (Fig. 1.10(c)).

The Wigner–Seitz cell is the innermost region bounded by the perpendicular bisectors, as

shown by the shaded region in Fig. 1.10(c). The same procedure can be applied in the case

of a generic three-dimensional lattice.

1.2 The Reciprocal Lattice

In order to develop an analytic study of a crystalline solid, it is often useful to introduce

the concept of a reciprocal lattice, which basically represents the Fourier transform of

the Bravais lattice. The reciprocal lattice of the reciprocal lattice is the direct lattice. The

reciprocal lattice provides a simple and useful basis for analyzing processes characterized

by a “wave nature” in crystals, like the behavior of electrons and lattice vibrations, or the

geometry of X-ray and electron diffraction patterns. Assuming a Bravais lattice defined

by the primitive translation vectors (a1, a2, a3), the reciprocal lattice can be defined by

introducing its primitive translation vectors (b1, b2, b3) in analogy with the lattice in a real

space. The axis vectors of the reciprocal space can be written as:

b1 =
2π

Vu

a2 × a3

b2 =
2π

Vu

a3 × a1

b3 =
2π

Vu

a1 × a2, (1.6)

where Vu is the volume of the unit cell given by:

Vu = a1 · (a2 × a3). (1.7)

The reciprocal lattice can be mapped by using the general translation vector G given by:

G = m1b1 + m2b2 + m3b3, (1.8)

where m1, m2, and m3 are integers. Vector G is called the reciprocal lattice vector. Note

that each vector given by Eq. 1.6 is orthogonal to two-axis vectors of the crystal lattice, so

that:
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8 Chapter 1 Band Structure of Semiconductors
�

bi · aj = 2πδij, (1.9)

where δij is the Kronecker delta symbol: δij = 0 for i �= j and δij = 1, for i = j. Moreover,

G · R = 2π (n1m1 + n2m2 + n3m3) = 2πℓ, ℓ = 0, ±1, ±2, ..., (1.10)

so that:

exp (i G · R) = 1. (1.11)

Any function f (r) with the periodicity of the crystal lattice, that is, f (r + R) = f (r), can be

expanded as:

f (r) =
∑

G

fG eiG·r, (1.12)

where:

fG =
1

Vu

∫

cell

f (r) e−iG·r dr. (1.13)

While vectors in the direct lattice have the dimension of length, the vectors in the recip-

rocal lattice have the dimension of [length]−1. The reciprocal space is therefore the most

convenient space for the wave vector k. Since each point in the reciprocal space can be

reached by the translation vector G, it is evident that we can restrict our analysis to a unit

cell defined by the vector bi. The Wigner–Seitz cell of the reciprocal lattice is called the

first Brillouin zone. There are also the second, third, etc. Brillouin zones, at an increasing

distance from the origin, all with the same volume. These higher order Brillouin zones can

be translated into the first zone by adding suitable translation vector G. A Wigner–Seitz

cell in the reciprocal space can be constructed following the same procedure used in the

real space. For example, in the simple case of a linear lattice, we have a single primitive

vector in the direct space: a1 = aux. From Eq. 1.9, it is obvious that the primitive vector in

the reciprocal space is:

b1 =
2π

a
ux. (1.14)

The corresponding translation vector is given by:

G = m
2π

a
ux, m = ±1, ±2, .... (1.15)

Following the rules for the construction of the first Brillouin zone, we have that this region

extends from k = −π/a to k = π/a.

Following the same procedure, it is possible to construct the first Brillouin zone for

three-dimensional structures. For a sc lattice, where:

a1 = aux, a2 = auy, a3 = auz, (1.16)

by using Eq. 1.6, where Vu = a3:

b1 =
2π

a
ux, b2 =

2π

a
uy, b3 =

2π

a
uz. (1.17)
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�Figure 1.11 First Brillouin zone for (a) the sc lattice, (b) the fcc lattice, which forms the underlying Bravais lattice for the diamond

and zinc–blende structures, and (c) the hexagonal wurtzite structure. Reported are the names of points and

directions of high symmetry.

Therefore, the reciprocal lattice of an sc lattice with cubic primitive cell of edge a is an sc

lattice with a cubic primitive cell of edge 2π/a, and the first Brillouin zone is defined as

follows:

−
π

a
≤ ki ≤

π

a
, i = x, y, z. (1.18)

This is shown in Fig. 1.11(a). The center of the first Brillouin zone is always called the

Ŵ-point. A typical convention is to call high-symmetry points and directions inside the

Brillouin zone by Greek letters and high-symmetry points on the surfaces of the Brillouin

zone by roman letters. For example, in the case of the fcc structure (see Fig. 1.11(b)), the

three high-symmetry directions [100], [110], and [111] are denoted by:

[100] direction: Ŵ̇ 
 Ẋ

[111] direction: Ŵ̇ � L̇

[110] direction: Ŵ̇ � K̇.

The X-point at (2π/a)(1,0,0) identifies the zone edge along the six equivalent [100] direc-

tions. The L-point is at (π/a)(1,1,1), and it is at the zone edge along the eight equivalent

[111] directions.
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10 Chapter 1 Band Structure of Semiconductors
�

1.3 Electrons in a Periodic Crystal

After this brief overview of introductory concepts of solid-state physics, we will study the

interactions of electrons with a periodic structure. We will consider bulk semiconductors,

that is, semiconductors with spatial dimensions much larger than the de Broglie wavelength

(λB = h/p, where p is the particle momentum) of the electrons involved in the interaction.

In order to study the electronic and optical properties of the crystal, we have first to cal-

culate the electronic wavefunctions and their energies inside the crystal. The system is

described by the following Schrödinger equation:
[

−
�

2

2m0

∇2 + U(r)

]

ψ(r) = Eψ(r), (1.19)

where U(r) is a periodic potential due to the atoms periodically placed in the crystal lat-

tice and to all interaction potentials between electrons. As a consequence of the crystal

structure, U(r) has the same periodicity of the lattice:

U(r + R) = U(r), (1.20)

where R is a translation vector of the crystal, given by Eq. 1.1. We recall that in vacuum,

where U(r) = 0, the stationary wavefunctions of the free electrons in a volume V are given

by:

ψk(r) =
1

√
V

eik·r,

delocalized over all the space with uniform probability density, k is the wavevector. The

electron momentum and energy are given by the following expressions:

p = �k, E =
�

2k2

2m0

, (1.21)

where m0 is the free electron mass. It is possible to demonstrate that the solutions of

the Schrödinger equation for a periodic potential are Bloch–Floquet (or simply Bloch)

functions so that (Bloch’s theorem):

ψnk(r) = unk(r) eik·r, (1.22)

where unk(r) has the same periodicity of the crystal:

unk(r + R) = unk(r), (1.23)

k is the wave vector, and n refers to the band (as will be discussed in this chapter). The

Bloch functions are the product of a plane wave and a function unk(r), with the lattice

periodicity. It is evident that the Bloch wavefunction is not periodic; indeed,

ψnk(r + R) = ψnk(r) eik·R, (1.24)

while the electron probability density is periodic:

|ψnk(r + R)|2 = |ψnk(r)|2. (1.25)
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