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The Ising Model

Few models in theoretical physics have been studied for as long, or in as much

detail, as the Ising model. It’s the simplest model to display a nontrivial phase

transition, and as such it plays a unique role in theoretical physics. In addition,

the Ising model can be applied to a wide range of physical systems, from

magnets and binary liquid mixtures, to adsorbed monolayers and superfluids, to

name just a few. In this chapter, we present some of the background material

that sets the stage for a detailed study of the Ising model in the chapters to come.

1.1 Magnetic Phase Transitions

The original purpose of the Ising model was to study phase transitions in

magnetic systems. We’ll start, then, with a brief discussion of magnetic phases

and phase diagrams, and we’ll introduce the Ising model itself in the next

section.

A simple magnetic system, like an iron magnet for example, displays two

distinct behaviors, as illustrated in Figure 1.1 (a). At high temperatures the

system is paramagnetic. In this region, the magnetization of the iron “tracks”

with the applied magnetic field, B. What this means is that if the magnetic field

is positive, relative to a particular direction, the magnetization is positive as

well; if the magnetic field is zero, the magnetization is zero; if the magnetic

field is negative, the magnetization is negative. In fact, for small magnetic fields

the magnetization is simply proportional to the field.

At low temperatures the system is ferromagnetic. As the magnetic field is

reduced from positive to zero in this region, the magnetization decreases to

a finite positive amount and remains at that value. This is a magnetization that is

due to the interactions between individual electron spins, and it persists even

when there is no external field to align the spins. Similarly, as the field is
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Figure 1.1 (a) A magnetic phase diagram in terms of the magnetic field, B, and

temperature, T. At high temperature the system is paramagnetic, with no perman-

ent magnetization. At low temperature the system is ferromagnetic, with up (+)

and down (–) magnetization coexisting along the B = 0 line. The critical point at

temperature Tc separates the ferromagnetic and paramagnetic regions. (b) Zero-

field magnetization,M, versus temperature, T, for the system in part (a). Notice that

the discontinuity in magnetization vanishes at the critical point, Tc.
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reduced in magnitude from the negative side, the magnetization approaches

a finite negative value. These observations are indicated by the + and – signs

above and below the temperature axis in Figure 1.1 (a).

It follows that there are two coexisting phases of matter at zero magnetic

field – the positive and negative magnetization phases – and that a discontinuity

in the magnetization occurs as the magnetic field crosses B = 0. No such

discontinuity is observed in the paramagnetic region of the phase diagram.

The discontinuity in the magnetization decreases in magnitude with increasing

temperature, and eventually vanishes at the critical temperature, Tc.

To highlight the key role played by the magnetization, consider a plot of

magnetization, M, versus temperature, T, as in Figure 1.1 (b). In this plot, the

applied magnetic field is zero, B = 0. As a result, the magnetization of the

system is zero at temperatures that are higher than Tc. When the temperature is

reduced to a value just below Tc, the system becomes magnetized; we refer to

this as a spontaneous magnetization.Whether the spontaneous magnetization is

positive or negative is determined randomly by the majority of spins when the

temperature drops below Tc. If we reduce the temperature further, the result is

an increasing magnitude of the magnetization. Eventually the magnetization

saturates to its largest positive or negative value, which we normalize as M =

±1. The “jump” from the lower to the upper branch of the magnetization curve

is the discontinuity that characterizes ferromagnetic behavior.

Theway to think about this phase transition on amicroscopic level is to picture

electron spins in the iron atoms trying to align with their neighbors through

exchange interactions. At high temperatures, thermal fluctuations overwhelm the

magnetic interactions and the spins are oriented randomly. As the temperature is

lowered, the magnetic interactions begin to win out over the thermal fluctuations,

and the system spontaneously picks an orientation for the entire system. We say

that the initial up–down symmetry of the system (recall that B = 0) has been

“spontaneously broken” as a finite up or down magnetization takes over.

The magnetization is referred to as the order parameter for this phase

transition. In general, the order parameter of a system is a quantity that is

zero in the disordered phase, and finite for temperatures below Tc. In addition,

the order parameter is a measure of the amount of order in the system; the larger

the order parameter, the greater the order.

A mathematical function with a discontinuity, like the one we see in the

magnetization below Tc, is referred to as a nonanalytic, or singular function –

a key feature of phase transitions. It follows that the system’s free energy – the

function that contains all of the equilibrium information about the system –

must be singular as well, as are its various derivatives. Since the magnetization

is the first derivative of the free energy with respect to the magnetic field, phase
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transitions like this are sometimes referred to in older literature as “first-order”

phase transitions. The accepted modern terminology is to simply refer to the

jump in magnetization below Tc as a “discontinuous” phase transition.

In contrast, consider the phase transition that occurs in Figure 1.1 (b) as one

moves from high to low temperature along the temperature axis. In this case, the

magnetization rises smoothly from zero to nonzero values as the temperature

goes through Tc. This sort of phase transition, with a continuous change in the

value of the order parameter, is referred to as a “continuous” phase transition.

Another example of a continuous phase transition is shown in Figure 1.2.

Here we see the temperature dependence of the zero-field magnetic suscepti-

bility, χ, which is defined as the derivative of the magnetization,M, with respect

to the magnetic field, B:

χ ¼
∂M

∂B
:

We see that χ is a smooth function, with no discontinuities. It is still a singular

function, however; in fact, notice that it diverges to infinity at the critical

temperature, Tc.

Again, we see that a phase transition is characterized by singular behavior in

a thermodynamic function. The susceptibility χ is the derivative of M with

respect to B, andM is the derivative of the free energy with respect to B, so χ is

Figure 1.2 The zero-field magnetic susceptibility, χ ¼ ∂M=∂B, as a function of

temperature. The susceptibility blows up to infinity at the critical point, Tc.
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the second derivative of the free energy. As a result, older literature sometimes

refers to this as a “second-order” phase transition.

We shall return frequently to the topic of the free energy, which we denote

by f, in our study of the Isingmodel. In fact, we will calculate the free energy for

many different systems, and we’ll see that it is the key to understanding the

behavior of a system. Once we obtain the free energy, we take first derivatives

to find average values, and second derivatives to find fluctuations about the

average. This will be a recurring theme throughout our exploration of the Ising

model.

Comparing with Other Phase Diagrams

Now that we’ve looked carefully at the characteristics of a magnetic phase

diagram, we’d like to put it in context by comparing with the phase diagram of

a familiar three-phase substance. In Figure 1.3 (a) we show a typical phase

diagram for a material with solid, liquid, and gaseous phases. The bold curves

denote discontinuous phase transitions, where two phases coexist along a curve

in the pressure–temperature plane. As these curves are crossed, there is

a discontinuity in the density of the material. The exception is at the critical

(a) (b)

Figure 1.3 (a) Phase diagram of a simple substance with three distinct phases:

solid, liquid, and gas. The bold curves denote the coexistence of the two phases on

either side of the curve. The liquid–gas coexistence curve terminates at the critical

point Tc, beyond which there is no distinction between liquid and gas. Points 1 and

2 can be connected without a phase transition by following a curved path, like the

dashed circle, that goes around the critical point. The solid–liquid curve extends to

infinity. (b) The magnetic phase diagram is similar to the liquid–gas portion of the

phase diagram in part (a), with up magnetization and down magnetization playing

the roles of liquid and gas, respectively. Points 1 and 2 can be connected without

a phase transition.
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point, Tc, where the density difference between the liquid and gas phases

vanishes – similar to the vanishing magnetization difference at Tc in the

magnetic phase diagram in Figure 1.3 (b).

In fact, the behavior along the liquid–gas transition curve in Figure 1.3 (a)

and the up-magnetization/down-magnetization line in Figure 1.3 (b) are analo-

gous in many respects. In both cases, a discontinuity is encountered if the bold

line is crossed. On the other hand, the system can be brought smoothly, and

with no discontinuities at all, along the dashed paths connecting points 1 and 2.

The critical points, labeled Tc, are points where a continuous phase transition is

observed.

The similarity in behavior near these critical points is more than just

qualitative – on close examination, the quantitative details associated with

the singularities are precisely the same in both the magnetic and nonmagnetic

substances. These surprisingly deep connections, which lead to the concept of

universality in critical behavior, will be explored in detail in Chapter 5.

1.2 The Ising Model of Magnetism

Now that we’re familiar with the magnetic behavior of a simple system like an

iron magnet, we would like to introduce a theoretical model to describe that

behavior mathematically. One approach is to produce a model as realistic as

possible, including millions of iron atoms interacting with one another through

overlapping wave functions, and with electrons influencing one another like

tiny magnets. Simulating such a system on a computer would be difficult, but

perhaps doable with powerful machines. It certainly wasn’t an option in 1920

when the Ising model was introduced.

A different approach, and one that is often used in theoretical physics, is to

adopt the philosophy, frequently espoused by Albert Einstein, that “Everything

should be made as simple as possible, but not simpler.” In terms of a theoretical

model, this means we would like to have a model that is bare-bones simple, but

still realistic enough to produce the desired physical behavior. Additional

complications can be added later, if desired, to include other types of behavior;

but it’s best to study the most basic aspects of a system first. The Ising model is

a good example of this approach.

Ising Variables

The Ising model is constructed with “spin” variables, s, that occupy the sites, i,

of a lattice. The value of the variable at any given lattice site, si, is meant to
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represent, in a crude way, the spin of an electron. Now, as we know, electrons

are spin-1/2 particles, with magnetic moments that are either aligned or anti-

aligned along a specified direction in space. In the Ising model, we represent

this by saying that each spin is either up (+1) or down (–1). Thus, Ising spins are

simply dimensionless numbers:

si ¼ �1:

More than anything else, a two-valued variable like this is what identifies

a model as “Ising like.” The variables can interact in various ways, or lie on

the vertices of various lattices, but they always have this simple plus–minus/

up–down/yes–no quality.

A microstate (or state, or configuration) of an Ising model consists of

a specific assignment of +1 or –1 to each of the spins in the system. If the

system is a lattice with N sites, it follows that the total number of states is 2N. In

the coming chapters, we’ll carry out sums over all such states to obtain the

thermodynamic functions associated with the Ising model. A specific example

of spin assignments for a group of Ising spins is given in Figure 1.4, along with

different ways of representing the spins pictorially.

The variables in an Ising model can be given different names, as long as they

have the same basic Ising symmetry. For example, consider a binary-liquid

mixture, consisting of two types of molecules, A and B. We can describe

a system like this with an Ising model whose variables represent one type of

molecule, si = A, or the other, si = B, as in Figure 1.5 (a). Similarly, the Ising

model could represent a system of helium atoms adsorbed on a surface of

graphite. In this case, each hexagonal adsorption site on the graphite surface is

either occupied by a helium atom (si = 1) or empty (si = 0), as illustrated in

Figure 1.5 (b).

These are just a couple examples of the many nonmagnetic systems that have

an underlying Ising-like character to them, and can be studied with the Ising

model.Wewill generally speak of the Isingmodel in magnetic terms, but it should

be remembered that the comments can apply to other types of systems as well.

Ising Hamiltonians

The next step in constructing an Ising model is to introduce interactions

involving the spin variables. These interactions produce different energies for

different spin states, as described by the Hamiltonian of the system. For

example, the Hamiltonian might have an energy term related to a spin aligning

or antialigning with an external magnetic field. Similarly, the Hamiltonian

could include a term describing the interaction of one spin with its neighbors.
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To begin, consider a single spin, s1, interacting with an external magnetic

field, B. The Hamiltonian H in this case can be written as follows:

H ¼ �μBBs1:

In this expression, μB is the Bohr magneton, which means that μBB has the units

of energy. The minus sign in front of μB ensures that a positive magnetic field,

B > 0, favors a positive spin, s1 ¼ þ1. To see why this is so, consider the energy

levels of the two states of the spin:

Spin state Energy

s1 ¼ þ1 H ¼ �μBB
s1 ¼ �1 H ¼ μBB

Notice that the lowest energy for B > 0 corresponds to s1 ¼ þ1, and so this state

is favored. If B < 0 the lowest energy occurs when s1 ¼ �1. Thus, with this

choice for the Hamiltonian, a given sign of B favors the same sign of s1:

Figure 1.4 (a) Ising spins are often represented as up or down arrows indicating

spins that are +1 or –1, respectively. In the state shown here, the spin values,

reading from left to right, are +1, +1, –1, +1. (b) Ising spins can be represented with

+ or minus – signs. (c) A different way of representing the same state as in parts (a)

and (b).
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(a)

(b)

Figure 1.5 (a) A lattice model for a binary mixture, where the Ising variables

take on the values si = A or si = B. (b) The centers of the hexagons

on a graphite lattice are adsorption sites that can be occupied by a helium atom,

si = 1, or empty, si = 0. We can think of the si as Ising variables.
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Next, let’s consider the interaction between a spin, s1, and a neighboring

spin, s2. If the interaction energy is J , the Hamiltonian can be written in the

following form:

H ¼ �Js1s2:

In this case, the minus sign ensures that J > 0 favors aligned spins (s1 ¼ s2),

and J < 0 favors antialigned spins (s1 ¼ �s2). This can be seen in the follow-

ing energy chart:

Spin state Energy

s1 ¼ s2 H ¼ �J
s1 ¼ �s2 H ¼ J

We say that J > 0 is a ferromagnetic interaction, and J < 0 is an antiferromag-

netic interaction.

Combining the two-spin interaction J with a magnetic field term B for two

Ising spins yields the following Hamiltonian:

H ¼ �Js1s2 � μBBðs1 þ s2Þ:

The J term tends to align or antialign neighboring spins, and the B terms tend to

align or antialign each spin with the direction of the magnetic field.

For the four-spin system shown in Figure 1.6 (a), the corresponding

Hamiltonian would be

H ¼ �Jðs1s2 þ s2s3 þ s3s4 þ s4s1Þ � μBBðs1 þ s2 þ s3 þ s4Þ:

In this Hamiltonian the J terms are nearest-neighbor interactions. If we wanted

to include next-nearest-neighbor interactions, with a strength J2 for example,

we would add the following terms to the Hamiltonian:

�J2ðs1s3 þ s2s4Þ:

Three- and four-spin interactions could be added as well, and we will see

examples of multispin interactions in the following chapters, but in general

we keep the interactions as simple as possible.

Finally, suppose we would like to apply a simple nearest-neighbor

Hamiltonian with a magnetic field to the case of an infinite lattice, as in

Figure 1.6 (b). In this case, the Hamiltonian is written as

H ¼ �J
X

〈ij〉

sisj � μBB
X

i

si: ð1:1Þ
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