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The Fourier and Laplace Transforms

The Laplace transform is a mathematical operation that converts a function

from one domain to another. And why would you want to do that? As you’ll

see in this chapter, changing domains can be immensely helpful in extracting

information from the mathematical functions and equations that describe the

behavior of natural phenomena as well as mechanical and electrical systems.

Specifically, when the Laplace transform operates on a function f (t) that

depends on the parameter t , the result of the operation is a function F(s)

that depends on the parameter s. You’ll learn the meaning of those parameters

as well as the details of the mathematical operation that is defined as the

Laplace transform in this chapter, and you’ll see why the Fourier transform

can be considered to be a special case of the Laplace transform.

The first section of this chapter (Section 1.1) shows you the mathematical

definition of the Laplace transform followed by explanations of phasors,

spectra, and the Fourier Transform in Section 1.2. You can see how these trans-

forms work in Section 1.3, and you can view transforms from the perspective of

linear algebra and inner products in Section 1.4. The relationship between the

Laplace frequency-domain function F(s) and the Fourier frequency spectrum

F(ω) is presented in Section 1.5, and inverse transforms are described in

Section 1.6. As in every chapter, the final section (Section 1.7) contains a set

of problems that you can use to check your understanding of the concepts and

mathematical techniques presented in this chapter. Full, interactive solutions

to every problem are freely available on the book’s website.

1.1 Definition of the Laplace Transform

This section is designed to help you understand the answers to the questions

“What is the Laplace transform?,” and “What does it mean?” As stated above,
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2 1 The Fourier and Laplace Transforms

the Laplace transform is a mathematical operation that converts a function

of one domain into a function of a different domain; recall that the domain

of a function is the set of all possible values of the input for that function.

The domains relevant to the Laplace transform are usually called the “t”

domain and the “s” domain; in most applications of the Laplace transform

the variable t represents time and the variable s represents a complex type of

frequency, as described below. The Laplace transform is an integral transform,

which means that the process of transforming a function f (t) from the

t-domain into a function F(s) in the s-domain involves an integral:

F(s) = L[f (t)] =
∫ +∞

−∞
f (t)e−stdt . (1.1)

So what does this equation tell you? It tells you how to find the s-domain

function F(s) that is the Laplace transform of the time-domain function f (t).

In the center portion of this equation, the expression L[f (t)] represents the

Laplace transform as a “Laplace transform operator” (L) that takes in the

time-domain function f (t), performs a series of mathematical operations on

that function, and produces the s-domain function F(s). Those operations are

shown in the right portion of the equation to be multiplication of f (t) by the

complex exponential function e−st and integration of the product over time.

The reasons for these operations are fully explained below.

You should be aware that Eq. 1.1, in which the integration is performed over

all time, from t = −∞ to t = +∞, is the bilateral (also called the “two-sided”)

version of the Laplace transform. In many practical applications, particularly

those involving initial-value problems and “causal” systems (for which the

output at any time depends only on inputs from earlier times), you’re likely

to see the Laplace transform equation written as

F(s) =
∫ +∞

0−
f (t)e−stdt, (1.2)

in which the lower limit of integration is set to zero (actually 0−, which is the

instant just before time t = 0, as explained below) rather than −∞. This is

called the unilateral or “one-sided” version of the Laplace transform, and it is

the form of the Laplace transform most often used in applications such as those

described in Chapter 4.

If this is the first time you’ve encountered a zero with a minus-sign

superscript (0−), don’t worry; the meaning of 0− and why it’s used as the

lower limit of the unilateral Laplace transform are not hard to understand. The

value of 0− is defined by the equation

www.cambridge.org/9781009098496
www.cambridge.org


Cambridge University Press
978-1-009-09849-6 — A Student's Guide to Laplace Transforms
Daniel Fleisch 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Definition of the Laplace Transform 3

0− = lim
ǫ→0

(0 − ǫ),

in which ǫ is a vanishingly small increment. Put into words, when applied to

time, 0− represents the time just before (that is, on the negative side or “just to

the left” of) time t = 0.

Likewise, 0+ is defined by the equation

0+ = lim
ǫ→0

(0 + ǫ),

which means that 0+ is just after (that is, on the positive side or “just to the

right” of) time t = 0.

And here is the relevance of this to the unilateral Laplace transform: if

you integrate a function using an integral with 0− as the lower limit and

any positive number as the upper limit, the value of the function at time

t = 0 contributes to the integration process. But if the lower limit is 0+ and the

upper limit is positive, the value of the function at t = 0 does not contribute to

the integration. Since several applications of the unilateral Laplace transform

involve functions with values that change significantly when their argument

equals zero, integrating such functions using 0− as the lower limit ensures that

the value at t = 0 contributes to the result.1

The Laplace transform equation may look a bit daunting at first glance, but

like many equations in physics and engineering, it becomes comprehensible

when you take the time to consider the meaning of each of its terms. To do

that, a good place to start is to make sure that you understand the answer to

the question that confounds many students even after they’ve learned to use

the Laplace transform to solve a variety of problems. That question is “What

exactly does the parameter s in the Laplace transform represent?”.

As mentioned above, in most applications of the Laplace transform in

physics, applied mathematics, and engineering, the real variable t in the

function f (t) represents time and the complex variable s in the function F(s)

is a generalized frequency that encompasses both a rate of decay (or growth) as

well as a frequency of oscillation. Like any complex number, the s-parameter

in the Laplace transform can be written as the sum of a real part and an

imaginary part:

s = σ + iω, (1.3)

in which σ represents the real part and ω represents the imaginary part

of the complex variable s, and i represents the imaginary unit i =
√

−1.

1 A complete discussion of the importance of 0− to the Laplace transform can be found in Kent
H. Lundberg, Haynes R. Miller, and David L. Trumper “Initial Conditions, Generalized
Functions, and the Laplace Transform,” http://math.mit.edu/∼hrm/papers/lmt.pdf.
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4 1 The Fourier and Laplace Transforms
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Figure 1.1 (a) Laplace parameter s on the complex plane, and (b) why i2 = −1.

To understand the nature of a complex number, it’s helpful to graphically

represent the real part and the imaginary part of a complex number on two

different number lines, as shown in the “complex plane” diagram in Fig. 1.1a.

As you can see, in the complex plane the imaginary number line is drawn

perpendicular to the real number line.

So what does this have to do with the imaginary unit i? Consider this: if you

multiply a number on the real number line, such as 5, by the imaginary unit i,

that real number 5 becomes the imaginary number 5i because it’s now on the

imaginary number line, as shown in Fig. 1.1b. And if you then multiply again

by i, you get 5i× i = −5. So if multiplying by i× i converts the number 5 into

−5, then i2 must equal −1, which means that i must equal
√

−1. Since

squaring any real number can’t result in a negative value, it’s understandable

that i has come to be called the imaginary unit.

The imaginary part of s (that is, ω) is the same angular frequency that you

may have encountered in physics and mathematics courses, which means that

ω represents the rate of angle change, with dimensions of angle per unit time

and SI units of radians per second. Since radians are dimensionless (being the

ratio of an arc length to a radius), the units of radians per second (rad/sec)

are equivalent to units of 1/seconds (1/sec), and this means that the result of

multiplying the angular frequency ω by time (t) is dimensionless.2 That is

reassuring since st = (σ + iω)t appears in the exponent of the term est in the

Laplace transform.

2 Note that the abbreviation “sec” is used for “seconds” rather than the standard “s”; this is done
throughout this book in order to avoid confusion with the Laplace generalized frequency
parameter.
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1.2 Phasors and Frequency Spectra 5

Since ω has dimensions of 1/time and SI units of 1/sec, Eq. 1.3 makes

sense only if σ and s also have dimensions of 1/time and SI units of 1/sec.

For this reason, you can think of s as a “generalized frequency” or “complex

frequency,” in which the imaginary part is the angular frequency ω. The

meaning of the real part (σ ) of the Laplace parameter s, and why it’s reasonable

to call it a type of frequency, is explained in Section 1.5.

If you’re wondering about the dimensions of the Laplace transform output

F(s), note that the time-domain function f (t) can represent any quantity that

changes over time, which could be voltage, force, field strength, pressure,

or many others. But you know that F(s) is the integral of f (t) (multiplied

by the dimensionless quantity e−st ) over time, so the dimensions of F(s)

must be those of f (t) multiplied by time. Thus if f (t) has dimension of

voltage (SI units of volts), the Laplace transform F(s) has dimensions of volts

multiplied by time (SI units of volts-seconds). But if f (t) has dimensions of

force (SI units of newtons), then F(s) has dimensions of force multiplied by

time (SI units of newtons-seconds).

1.2 Phasors and Frequency Spectra

Before getting into the reasons for using a complex frequency parameter

in a Laplace transform, it’s helpful to consider the product of the angular

frequency ω with the imaginary unit i =
√

−1 and time t in the exponential

function eiωt . This produces a type of spinning arrow sometimes called

a “phasor,” a contraction of the words “phased vector.” As time passes,

the phasor represented by eiωt rotates in the anticlockwise direction about the

origin of the complex plane with angular frequency ω. As you can see in the

upper left portion of Fig. 1.2, the angle (in radians) that this phasor makes with

the positive real axis at any time t is given by the product ωt , so the larger the

value of ω, the faster the phasor rotates. And if ω is negative, the phasor eiωt

rotates in the clockwise direction.3

You should also remember the relationship between the exponential func-

tion eiωt and the functions sin (ωt) and cos (ωt) is given by Euler’s relation:

e±iωt = cos (ωt) ± i sin (ωt), (1.4)

3 Some students, thinking of frequency as some number of cycles per second, wonder “How can
anything rotate a negative number of cycles per second?” That question is answered by thinking
of frequency components in terms of phasors that can rotate either clockwise (negative ω) or
anticlockwise (positive ω).
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6 1 The Fourier and Laplace Transforms
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Figure 1.2 Rotating phasor relation to sine and cosine functions.

which is also illustrated in Fig. 1.2. As shown in the figure, the projection of the

rotating phasor onto the real axis over time traces out a cosine function, and the

phasor’s projection onto the imaginary axis traces out a sine function. Adding

a time axis as the third dimension of the complex-plane graph of a rotating

phasor results in the three-dimensional plot shown in Fig. 1.3, in which the

solid line represents the path of the tip of the eiωt phasor over time.

So the exponential function eiωt is complex, with the real part equal to

cos (ωt) and the imaginary part equal to sin (ωt). Also helpful are the inverse

Euler relations, which tell you that the cosine and sine functions can be repre-

sented by the combination of two counter-rotating phasors (eiωt and e−iωt ):

cos (ωt) =
eiωt + e−iωt

2
(1.5)

and

sin (ωt) =
eiωt − e−iωt

2i
. (1.6)

(If you’d like to see how these counter-rotating phasors add up to give the

cosine and sine functions, check out the problems at the end of this chapter

and the online solutions).
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1.2 Phasors and Frequency Spectra 7
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Figure 1.3 The path of the tip of the rotating phasor eiωt over time with ω = 20

rad/sec.

This means that the real angular frequency ω does a perfectly good job of

representing a sinusoidally varying function when inserted into the exponential

function eiωt . But that may cause you to wonder “Why bother making a

complex frequency s = σ + iω?”

To understand the answer to that question, it’s helpful to begin by making

sure you understand the Fourier transform, which is a slightly simpler special

case of the Laplace transform. The equation for the Fourier transform looks

like this:

F(ω) =
∫ +∞

−∞
f (t)e−iωtdt . (1.7)

Comparing this equation to the equation for the bilateral Laplace transform

(Eq. 1.1), you can see that these equations become identical if you set the real

part σ of the Laplace complex frequency s to zero, which makes s = σ + iω =
0 + iω. That makes the bilateral Laplace transform look like this:

F(s) =
∫ +∞

−∞
f (t)e−(σ+iω)tdt =

∫ +∞

−∞
f (t)e−iωtdt, (1.8)
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8 1 The Fourier and Laplace Transforms

which is identical to the Fourier transform. So the Fourier transform is a special

case of the Laplace transform; specifically, it’s the case in which the real part

σ of the complex frequency s is zero.4

Just as the Laplace transform tells you how to find the s-domain function

F(s) that is the Laplace transform of the time-domain function f (t), the

Fourier transform tells you how to find the frequency-domain function F(ω)

(often called the “frequency spectrum”) that is the Fourier transform of the

time function f (t). Note that although f (t) may be purely real, the presence

of the factor e−iωt means that the frequency spectrum F(ω) may be complex.

There are many helpful books and online resources dealing with the Fourier

transform, including one of the books in the Student’s Guide series (A Student’s

Guide to Fourier Transforms by J. F. James), so you should take a look at those

if you’d like more detail about the Fourier transform. But the remainder of this

section contains a short description of the meaning of the frequency spectrum

F(ω) produced by operating on a time-domain function f (t) with the Fourier

transform, and the next section has an explanation of why the operations shown

in Eq. 1.7 produce the frequency spectrum F(ω), along with an example.

It is important to understand that the frequency-domain function F(ω)

contains the same information as the time-domain function f (t), but in

many cases the frequency-domain representation may be much more readily

interpreted. That is because the frequency spectrum F(ω) represents a time-

changing quantity (such as a voltage, wave amplitude, or field strength) not as

a series of values at different points in time, but rather as a series of sinusoidal

“frequency components” that add together to produce the signal or waveform

represented by the time-domain function f (t). Specifically, for a real time-

domain function f (t), at any angular frequency ω, the real part of F(ω) tells

you how much cos (ωt) is present in the mix, and the imaginary part of F(ω)

tells you how much sin (ωt) is present. And although the function f (t) that

represents the changes in a quantity over time can look quite complicated

when graphed, that behavior may be produced by a mixture of a reasonably

small number of sinusoidal frequency components. An example of that is

shown in Fig. 1.4, in which f (t) represents a time-varying quantity and F(ω),

the Fourier transform of f (t), is the corresponding frequency spectrum (for

simplicity, only the positive-frequency portion of the spectrum is shown). As

you can see, trying to determine the frequency content using the graph of f (t)

4 Note that this does not mean that you can find the Fourier transform F(ω) of any function
simply by substituting s = iω into the result of the Laplace transform F(s) – for that to work,
the region of convergence of the Laplace transform must include the σ = 0 axis in the complex
plane, as discussed in Section 1.5.
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Figure 1.4 (a) Time-domain function f (t) and (b) magnitude of frequency-

domain function F(ω).

shown in Fig. 1.4a would be quite difficult. But the graph of the magnitude

of the frequency-domain function |F(ω)| in Fig. 1.4b makes it immediately

obvious that there are four frequency components present in this waveform.

The frequency of each of those four components is given by its position along

the horizontal axis; those frequencies are 10, 20, 30, and 60 cycles per second

(Hz) in this case. The height of each peak indicates the “amount” of each

frequency component in the mix that makes up f (t); in this case those relative

amounts are approximately 0.38 at 10 Hz, 0.23 at 20 Hz, 1.0 at 30 Hz, and

0.62 at 60 Hz.

So that’s why it is often worth the effort to calculate the frequency

spectrum F(ω) by taking the Fourier transform of f (t). But how exactly does

multiplying f (t) by the complex exponential e−iωt and integrating the product

over time accomplish that?

You can get a sense of how the Fourier transform works by remembering

that multiplying f (t) by e−iωt is just like multiplying f (t) by cos (ωt) and by

−i sin ωt , so the Fourier transform can be written like this:

F(ω) =
∫ +∞

−∞
f (t)e−iωtdt

=
∫ +∞

−∞
f (t) cos (ωt)dt − i

∫ +∞

−∞
f (t) sin (ωt)dt .
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10 1 The Fourier and Laplace Transforms

This form of the Fourier transform reminds you that when you use the

Fourier transform to generate the frequency spectrum F(ω), you are essentially

“decomposing” the time-domain function f (t) into its sinusoidal frequency

components (a series of cosine and sine functions that produce f (t) when

added together in proper proportions). To accomplish that decomposition, you

can use the functions cos (ωt) and sin (ωt) for every value of ω as “testing

functions” – that is, functions that can be used to determine whether these

frequency components are present in the function f (t). Even better, the process

of multiplication by these testing functions and integration of the product over

time is an indicator of “how much” of each frequency component is present in

f (t) (that is, the relative amplitude of each cosine or sine function). You can

see how that process works in the next section.

1.3 How These Transforms Work

To understand how the process of decomposing a time-domain function into its

sinusoidal frequency components works, consider the case in which the time-

domain function f (t) is simply a cosine function with angular frequency ω1.

Of course, for this single-frequency case you can see by inspection of a graph

of f (t) that this function contains only one frequency component, a cosine

function with angular frequency ω1, but the decomposition process works in

the same way when a cosine or sine function is buried among many other

components with different frequencies and amplitudes.

Figures 1.5 and 1.6 show what happens when you multiply f (t)= cos (ω1t)

by cosine and sine functions (the real and imaginary parts of e−iωt ). In Fig. 1.5,

t
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Figure 1.5 Multiplying f (t) = cos (ω1t) by (a) the real portion and (b) the

imaginary portion of e−iωt when ω = ω1.
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