Intermediate Dynamics

This advanced undergraduate physics textbook presents an accessible treatment of classical mechanics using plain language and clear examples. While comprehensive, the book can be tailored to a one-semester course. An early introduction of the Lagrangian and Hamiltonian formalisms gives students an opportunity to utilize these important techniques in the easily visualized context of classical mechanics. The inclusion of 321 simple in-chapter exercises, 82 worked examples, 550 more challenging end-of-chapter problems, and 65 computational projects reinforce students’ understanding of key physical concepts and give instructors freedom to choose from a wide variety of assessment and support materials. This new edition has been reorganized. Numerous sections were rewritten. New problems, a chapter on fluid dynamics, and brief optional studies of advanced topics such as general relativity and orbital mechanics have been incorporated. Online resources include a solutions manual for instructors, lecture slides, and a set of student-oriented video lectures.

Patrick Hamill has taught physics at San José State University for over 30 years. During that time he was honored by student organizations for teaching excellence and was named a “President’s Scholar” for his research activities in atmospheric science. He received the NASA Ames Julian Allen award for his studies of the role of polar stratospheric clouds in the formation of the ozone hole over the Antarctic. Professor Hamill has published over 100 peer-reviewed papers. He is the author of the Cambridge University Press text, A Student’s Guide to Lagrangians and Hamiltonians.
Intermediate Dynamics
Second Edition

PATRICK HAMILL
San José State University, California
Contents

Preface
page xiii

Part I Kinematics and Dynamics
page 1

1. **A Brief Review of Introductory Concepts**
1.1 Kinematics
1.2 Newton’s Second Law
1.3 Work and Energy
1.4 Momentum
1.5 Rotational Motion
1.6 Statics
1.7 Rotational Kinetic Energy
1.8 Angular Momentum
1.9 Rotational Equivalents
1.10 Summary
1.11 Problems
1.11 Computational Projects
page 17

2. **Kinematics**
2.1 Galileo Galilei (Historical Note)
2.2 The Principle of Inertia
2.3 Basic Concepts in Kinematics
2.4 The Position of a Particle on a Plane
2.5 Unit Vectors
2.6 Kinematics in Two Dimensions
2.7 Kinematics in Three Dimensions
2.8 Summary
2.9 Problems
2.9 Computational Projects
page 47

3. **Newton’s Laws: Determining the Motion**
3.1 Isaac Newton (Historical Note)
3.2 The Law of Inertia
3.3 Newton’s Second Law and the Equation of Motion
3.4 Newton’s Third Law: Action Equals Reaction
3.5 Is Rotational Velocity Absolute or Relative?
3.6 Determining the Motion
page 58
CONTENTS

3.7 Simple Harmonic Motion 65
3.8 Closed-Form Solutions 67
3.9 Numerical Solutions (Optional) 68
3.10 Summary 70
3.11 Problems 71

Computational Projects 78

4 Lagrangians and Hamiltonians 79
4.1 Joseph Louis Lagrange (Historical Note) 79
4.2 The Equation of Motion by Inspection 80
4.3 The Lagrangian 81
4.4 Lagrange’s Equations 86
4.5 Degrees of Freedom 89
4.6 Generalized Momentum 90
4.7 Generalized Force 93
4.8 The Calculus of Variations 95
4.9 The Hamiltonian and Hamilton’s Equations 100
4.10 Summary 104
4.11 Problems 105

Computational Projects 110

Part II Conservation Laws 113

5 Energy 115
5.1 The Work–Energy Theorem 115
5.2 Work Along a Path: The Line Integral 116
5.3 Potential Energy 120
5.4 Force, Work, and Potential Energy 130
5.5 The Conservation of Energy 134
5.6 Energy Diagrams 136
5.7 The Energy Integral: Solving for the Motion 138
5.8 The Kinetic Energy of a System of Particles 140
5.9 Work on an Extended Body: Pseudowork 141
5.10 Summary 142
5.11 Problems 145

Computational Projects 149

6 Linear Momentum 150
6.1 The Law of Conservation of Momentum 150
6.2 The Motion of a Rocket 151
6.3 Collisions 154
6.4 Inelastic Collisions: The Coefficient of Restitution 161
6.5 Impulse 162
6.6 Momentum of a System of Particles 163
6.7 Relative Motion and the Reduced Mass 164
6.8 Collisions in Center of Mass Coordinates (Optional) 165
6.9 Summary 170
CONTENTS

6.10 Problems 171
Computational Projects 175

7 Angular Momentum 177
7.1 Definition of Angular Momentum 177
7.2 Conservation of Angular Momentum 178
7.3 Angular Momentum of a System of Particles 180
7.4 Rotation of a Rigid Body about a Fixed Axis 185
7.5 The Moment of Inertia 187
7.6 The Gyroscope 189
7.7 Angular Momentum is an Axial Vector 191
7.8 Summary 193
7.9 Problems 194
Computational Project 198

8 Conservation Laws and Symmetries 199
8.1 Emmy Noether (Historical Note) 199
8.2 Symmetry 200
8.3 Symmetry and the Laws of Physics 201
8.4 Symmetries and Conserved Physical Quantities 202
8.5 Are the Laws of Physics Symmetrical? 204
8.6 Strangeness (Optional) 205
8.7 Symmetry Breaking 206
8.8 Problems 206

Part III Gravity 209

9 The Gravitational Field 211
9.1 Newton’s Law of Universal Gravitation 211
9.2 The Gravitational Field 213
9.3 The Gravitational Field of an Extended Body 216
9.4 The Gravitational Potential 219
9.5 Field Lines and Equipotential Surfaces 221
9.6 The Newtonian Gravitational Field Equations 222
9.7 The Equations of Poisson and Laplace 225
9.8 Einstein’s Theory of Gravitation (Optional) 226
9.9 Summary 230
9.10 Problems 231
Computational Projects 234

10 Central Force Motion: The Kepler Problem 236
10.1 Johannes Kepler (Historical Note) 236
10.2 Kepler’s Laws 238
10.3 Central Forces 238
10.4 The Equation of Motion 243
10.5 Energy and the Effective Potential Energy 246
10.6 Solving the Radial Equation of Motion 250
CONTENTS

10.7 The Equation of the Orbit 251
10.8 The Equation of an Ellipse 255
10.9 Kepler’s Laws Revisited 261
10.10 Orbital Mechanics 265
10.11 A Perturbed Circular Orbit 267
10.12 Resonances 272
10.13 Summary 273
10.14 Problems 273

Computational Projects 278

Part IV Oscillations and Waves 281

11 Harmonic Motion 283
11.1 Springs and Pendulums 283
11.2 Solving the Differential Equation 286
11.3 The Damped Harmonic Oscillator 291
11.4 The Forced Harmonic Oscillator 297
11.5 Coupled Oscillators 309
11.6 Summary 315
11.7 Problems 316

Computational Projects 319

12 The Pendulum 320
12.1 A Simple Pendulum with Arbitrary Amplitude 320
12.2 The Physical Pendulum 326
12.3 The Center of Percussion 329
12.4 The Spherical Pendulum 333
12.5 Summary 342
12.6 Problems 343

Computational Projects 347

13 Waves 348
13.1 A Wave in a Stretched String 348
13.2 Direct Solution of the Wave Equation 351
13.3 Standing Waves 355
13.4 Traveling Waves 357
13.5 Standing Waves as a Special Case of Traveling Waves 359
13.6 Energy 360
13.7 Momentum (Optional) 364
13.8 Summary 366
13.9 Problems 367

Computational Projects 370

14 Small Oscillations (Optional) 371
14.1 Introduction 371
14.2 Statement of the Problem 371
14.3 Normal Modes 376
14.4 Matrix Formulation 383
CONTENTS

14.5 Normal Coordinates 385
14.6 Coupled Pendulums: An Example 387
14.7 Many Degrees of Freedom 391
14.8 Transition to Continuous Systems 394
14.9 Summary 399
14.10 Problems 401

Computational Projects 402

Part V Rotation 403

15 Accelerated Reference Frames 405
15.1 A Linearly Accelerating Reference Frame 405
15.2 A Rotating Coordinate Frame 406
15.3 Fictitious Forces 408
15.4 Centrifugal Force and the Plumb Bob 410
15.5 The Coriolis Force 412
15.6 The Foucault Pendulum 417
15.7 Application: The Tidal Force (Optional) 422
15.8 Summary 426
15.9 Problems 426

Computational Projects 429

16 Rotational Kinematics 430
16.1 Orientation of a Rigid Body 430
16.2 Orthogonal Transformations 432
16.3 The Euler Angles 439
16.4 Euler’s Theorem 442
16.5 Infinitesimal Rotations 451
16.6 Summary 452
16.7 Problems 454

Computational Projects 455

17 Rotational Dynamics 456
17.1 Angular Momentum 456
17.2 Kinetic Energy 460
17.3 Properties of the Inertia Tensor 461
17.4 The Euler Equations of Motion 472
17.5 Torque-Free Motion 473
17.6 The Spinning Top (Gyroscope) 475
17.7 Summary 483
17.8 Problems 484

Computational Projects 487

Part VI Special Topics 489

18 Statics 491
18.1 Basic Concepts 491
18.2	Couples, Resultants, and Equilibrants	494
18.3	Reduction to the Simplest Set of Forces	495
18.4	The Hanging Cable	495
18.5	Stress and Strain	500
18.6	The Centroid (Optional)	501
18.7	The Center of Gravity (Optional)	503
18.8	D’Alembert’s Principle and Virtual Work	504
18.9	Summary	508
18.10	Problems	509

Computational Projects 512

19	Fluid Dynamics and Sound Waves (Optional)	513
19.1	Introduction	513
19.2	Equilibrium of Fluids (Hydrostatics)	513
19.3	Fluid Kinematics	518
19.4	Equation of Motion: Euler’s Equation	526
19.5	Conservation of Mass, Momentum, and Energy	529
19.6	Sound Waves	533
19.7	Solving the Wave Equation by Separation of Variables	539
19.8	Summary	543
19.9	Problems	544

20	The Special Theory of Relativity	546
20.1	Albert Einstein (Historical Note)	546
20.2	Experimental Background	547
20.3	The Postulates of Special Relativity	549
20.4	The Lorentz Transformations	549
20.5	The Addition of Velocities	555
20.6	Simultaneity and Causality	557
20.7	The Twin Paradox	559
20.8	Minkowski Space-Time Diagrams	561
20.9	4-Vectors	564
20.10	Relativistic Dynamics	568
20.11	Summary	571
20.12	Problems	572

21	Classical Chaos (Optional)	575
21.1	Configuration Space and Phase Space	576
21.2	Periodic Motion	577
21.3	Attractors	579
21.4	Chaotic Trajectories and Liapunov Exponents	580
21.5	Poincaré Maps	580
21.6	The Henon–Heiles Hamiltonian	582
21.7	Summary	584
21.8	Problem	585

Computational Projects 585
Preface

Although this book begins at an introductory level, by the end of the book the student will have been exposed to all of the subject matter usually found in an intermediate mechanics course as well as a few advanced topics.

Organization

This book is divided into six parts. Part I is called “Kinematics and Dynamics.” This part (Chapters 1–4) covers kinematics in various coordinate systems, the dynamical theory of Isaac Newton, the equations of motion given by Newton’s second law, and the equations of Lagrange and Hamilton. Chapter 1 consists of a review of a few essential introductory concepts. This chapter can be skipped by well-prepared students, or assigned as reading for students who only need a quick refresher. The next chapter (Chapter 2) is called “Kinematics.” This is the traditional starting point for courses in intermediate mechanics. Here, the student is exposed to relations between acceleration, velocity, and position in Cartesian, plane polar, cylindrical, and spherical coordinates. A few simple concepts from vector analysis are introduced. A number of reasonably difficult projectile problems are included in the problems. The next chapter (Chapter 3) considers Newton’s laws. It includes a discussion on “Determining the Motion” in which the student learns techniques for integrating Newton’s second law to obtain the position as a function of time. This is done for constant forces, and for forces that are functions of time, of velocity, and of position. A short section called “Numerical Solutions” gives a flavor for the use of computational techniques in physics. The role of computers in physics is not emphasized in this course. However, I realize that many instructors want to expose their students to computational methods, so I have included a few discussions of numerical techniques. Furthermore, nearly every chapter has a number of “Computational Projects.” However, this text does not stress the role of computers in physics because I find that teaching the traditional material of intermediate mechanics takes most of two semesters and does not give enough time to delve into computational physics. Furthermore, many universities have included a computational physics course in the undergraduate physics curriculum. The next chapter (Chapter 4) is called “Lagrangians and Hamiltonians.” I think it is important for physics students to be exposed to these concepts early on in their study of mechanics. The Lagrangian is presented, at first, as a simple technique for generating the equation of motion. Later in the chapter, I go through a derivation of the Lagrange equations using the calculus of variations. This section need not be covered if the instructor feels it is too advanced. The chapter ends with a discussion of the Hamiltonian and Hamilton’s equations. There are several reasons why I chose to present the Lagrangian early in the course, perhaps the most important being that it gives the student a simple (almost “cookbook”) technique for obtaining the equations of motion for a complicated dynamical system. For example, the Lagrangian technique allows one to determine the equations of motion for a double pendulum, for a spherical pendulum, or for coupled oscillators. More importantly, it allows one to introduce the concepts of generalized momentum and ignorable
coordinates and leads to the relation between conservation laws and symmetries. Furthermore, it lets the student know that this course is not simply a rehash of concepts learned in introductory physics.

Part II (Chapters 5–8) is denoted “Conservation Laws” in which conservation principles are treated in depth. These chapters cover the conservations of energy, linear momentum, and angular momentum (Chapters 5, 6, and 7), followed by a short chapter (Chapter 8) on the relation between symmetry and conservation laws. Chapter 5, on the conservation of energy, discusses potential energy and the use of energy diagrams. Potential energy naturally leads to a discussion of the gradient of a scalar field. There is a section on the way the “Del” operator can be expressed in cylindrical and spherical coordinates; this allows one to discuss coordinate transformations in general. (I believe that introducing concepts from vector calculus as required by the physics is more effective than stuffing all of the vector concepts into a single introductory chapter.) Chapters 6 and 7, on the conservation of linear and angular momentum, cover the usual topics (rockets, collisions, etc.) as well as some less usual topics such as the fact that angular momentum is an axial vector.

Part III is called “Gravity” and consists of two chapters. The first one (Chapter 9) deals with Newtonian gravity and is an introduction to field theory. The study is limited to considerations of the gravitational field, because field theory is treated exhaustively in courses on electromagnetism. Additional vector concepts are introduced here and the student is exposed to Gauss’s law and the equations of Poisson and Laplace. I felt that a chapter on gravity would be incomplete if Einstein’s contributions were ignored. The topic is rather forbidding from a mathematical point of view, but I attempted to present it in a way that would make sense to students at this stage of their development. Nevertheless, I expect that many instructors will prefer not to discuss this admittedly superficial analysis, so I have labeled the section “Optional.” The next chapter (Chapter 10) deals with central force motion in a gravitational field, as illustrated by the Kepler problem. Also considered is the stability of circular orbits, showing the student how to deal with small perturbations. Specifically, we imagine a comet striking a planet in a previously perfectly circular orbit and analyze the planet’s subsequent motion to determine stability conditions and the frequency of radial oscillations.

Part IV (Chapters 11–14) is called “Oscillations and Waves.” In Chapter 11 damped and driven harmonic oscillators are treated in depth. A rather thorough discussion on how to solve second order differential equations is included here. Coupled oscillators and normal modes are considered. Chapter 12 is on the motion of a pendulum. We begin with the motion of a simple pendulum of arbitrary amplitude and introduce elliptic integrals. Next we consider the physical pendulum, centers of oscillation and percussion, the spherical pendulum, and the conical pendulum. To spend a whole chapter on the pendulum may seem excessive, but it is a simple, easily visualized physical system that allows one to introduce many useful mathematical techniques without having to spend time explaining the motion. The next chapter in this part (Chapter 13) is an introduction to wave motion. This topic is not considered in great detail because it is treated extensively in the undergraduate electromagnetic theory class. Nevertheless, the student will receive a reasonably complete overview of mechanical waves. Sound waves require knowledge of fluid dynamics and are left to Chapter 19. The last chapter in Part IV is an analysis of small oscillations. It is rather advanced and the chapter is denoted as optional.

Part V (Chapters 15–17) is called “Rotation.” Portions of the material in this part may be too advanced for some classes, but the instructor will probably want to cover Chapter 15 and some topics in rotational kinematics and dynamics. The first chapter in this part (Chapters 15) is called “Accelerated Reference Frames” in which we (mainly) consider motion on the surface of the rotating Earth. Coriolis forces and the Foucault pendulum are treated. Perturbation theory is used to solve these problems. Chapter 16 (on rotational kinematics) introduces orthogonal transformations. We obtain the Euler angles and consider Euler’s theorem. The following chapter (Chapter 17) on rotational dynamics introduces the inertia tensor and some simple methods from tensor analysis.
The last part of the book is called “Special Topics” and consists of four chapters (18–21). The first chapter in this part (Chapter 18) is a fairly advanced study of statics, including a discussion of d’Alembert’s principle and the concept of virtual work. The next chapter (Chapter 19) is called “Fluid Dynamics and Sound Waves.” Logically, this material could be treated immediately after Chapter 13, but the mathematics gets fairly complicated so I placed it near the end of the book and marked it as “optional.” The instructor may wish to cover the section on hydrostatics and skip the rest of the chapter. The next chapter (Chapter 20) “The Special Theory of Relativity” is an introduction to special relativity, and the final chapter (Chapter 21) “Classical Chaos” is a brief introduction to chaos. These two chapters are simply intended to give the student a flavor of these interesting subjects.

A One-Semester Course

Many instructors will find that the intermediate mechanics course in their department has been reduced to one semester. In such a situation it is impossible to cover all of the material in this book. From a personal perspective I feel that the essential material is covered in Parts I and II and Chapters 11, 15, and 16.

Exercises and Problems

Learning physics requires doing physics, so I have included a large number of “exercises.” These are found at the end of nearly every section. Most of them are fairly easy. Some are merely “plug-ins” to get the student to look at a formula and (hopefully) to think about it. Others ask the student to fill in the missing steps in a derivation. A few require a bit of clever thinking. Nearly all have answers given. I hope that students studying this book will solve every one of these exercises. At the end of each chapter is a collection of problems that are of the degree of difficulty to be expected from a course at this level. Many of these will require significant effort on the part of the student. However, I believe that a student who has read the chapter and worked the exercises will be prepared to attack the problems.

Acknowledgments

I thank my colleagues at San Jose State University and NASA Ames Research Center, particularly Dr. Alejandro Garcia and Dr. Michael Kaufman. I am especially indebted to the many students in my mechanics courses whose influence on this book cannot be overestimated.