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1 A Brief Review of Introductory
Concepts

You already know a lot of physics and quite a bit of mathematics. You have been exposed to

introductory courses in Mechanics, Electromagnetism, Thermodynamics, and Optics. You are

now beginning your studies of these topics in a much more profound and rigorous manner. I hate

to tell you this, but you are expected to know those concepts from the introductory courses! I

know how easy it is to forget definitions and mathematical relationships if you are not using them

all the time. So this chapter is a brief review of some of the concepts from your introductory

mechanics course that you will be using in this intermediate level course. (I have included only

those concepts that are absolutely necessary.) If the brief explanations in this chapter are not

sufficient, please go back to your introductory physics textbook and review the material there.

The standard introductory physics texts are well written and contain many instructive figures and

diagrams. It is a good idea to refer to that text whenever you are exposed to the same material on

a more advanced level.1

Just as in introductory physics, you will begin the upper-division physics sequence with this

course in classical mechanics. This is the most beautiful of all physics courses (at least in my

opinion!). It is also probably the most useful of all physics courses as it is the basis of essentially

all advanced physics. The brilliant physicists who developed Quantum Mechanics, Relativity,

Statistical Mechanics, etc., were experts in Classical Mechanics. The Lagrangian (which you

will study in Chapter 4) is the basis of Elementary Particle Physics and the Hamiltonian (also in

Chapter 4) is fundamental in Quantum Mechanics.

As you may recall, the mechanics section of your introductory physics book covered the

following topics:

• Kinematics

• Newton’s second law

• Work and energy

• Momentum

• Rotational motion.

We now very briefly review some concepts from each of these items.

1.1 Kinematics

Kinematics is the study of motion. Essentially, kinematics involves determining the relationships

between position, velocity, acceleration, and time.

1 If you are a particularly well-prepared student and feel that you know the material in this chapter, I suggest that you

go to the end of each section where you will find a few exercises. If you can solve them, then skip to the next section,

but if you feel uncertain or even somewhat confused, read the section. You might also try solving a few of the

problems at the end of the chapter.
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4 1 A BRIEF REVIEW OF INTRODUCTORY CONCEPTS

Position is denoted by the vector2 r and the change in position (or displacement) can be written

as �r.

Velocity is defined as the displacement with respect to time, so the average velocity is given by

〈v〉 =
�r

�t
,

where �t is the time during which the object had a displacement �r.

As the time interval becomes very small, we replace the difference (represented by �) with the

derivative and write

v =
dr

dt
. (1.1)

The change in velocity with respect to time is called the acceleration and is given by

a =
dv

dt
. (1.2)

We can use the definitions of acceleration and velocity to write the inverse relation:∫
dv =

∫
adt .

Integrating we get

v =

∫
adt + constant.

Integrating again,

r =

∫
vdt + constant.

These are vector relationships and are valid in any coordinate system. In Chapter 2 you will

find the relations between acceleration, velocity, and position in various coordinate systems.

1.1.1 Motion in a Straight Line at Constant Acceleration

For motion in a straight line,3 we do not need to use vector notation. Let the position to be

represented by x. If the acceleration is constant the integrals above lead to the familiar relations

v(t) = at + v0, (1.3)

and

x(t) =
1

2
at2 + v0t + x0, (1.4)

where v0 and x0 are the initial velocity and the initial position.

You probably memorized Equations (1.3) and (1.4) in your introductory physics course. But

don’t forget that they are only valid if the acceleration is constant. In this course, we shall

frequently be concerned with nonconstant accelerations and these relations cannot be used. The

appropriate relations are derived in Chapter 3.

Two other useful relations can be obtained from Equations (1.3) and (1.4). Solving one

equation for t and substituting it in the other yields

2a(x − x0) = v2 − v2
0 .

2 In this book vectors are represented in bold face (r), whereas scalars are represented by italics (r).
3 Motion in a straight line is an example of one-dimensional motion.
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1.2 Newton’s Second Law 5

Similarly, if we solve one equation for a and substitute it in the other equation we obtain

x − x0 =
1

2
(v + v0)t .

Again I emphasize that these relations are valid only if the acceleration is constant.

Comment In this book you will find a large number of “exercises.” They are not difficult.

They are intended to give you a chance to review and understand the concepts in the preceding

section. It would be a good idea to work out the solution for each exercise as you read through

the text. At the end of each chapter you will find a set of problems that are significantly more

difficult than the exercises. However, if you solve the exercises, you will be well prepared for

solving the problems. Many students find working the exercises to be a good preparation for

the examinations.

Exercise 1.1

You were driving your new Ferrari at 62 mph (= 100 km/h) when you spotted a police car.

Naturally, you hit the brakes. You slowed to 31 mph, covering a distance of 50 m. (a) What is

your constant acceleration? (b) How much time did it take to slow to 31 mph? Answers: (a)

−5.79 m/s2, (b) 2.4 s. �

1.2 Newton’s Second Law

The study of the relation between the forces acting on a body and the motion of the body is called

dynamics. In your introductory course you were exposed to dynamics in the form of Newton’s

second law. That law states that a body of mass m acted upon by a force F will accelerate at

a = F/m.

This relationship is usually remembered as

F = ma. (1.5)

As we will discuss in Chapter 3, this form of Newton’s second law is only valid if the mass is

constant. The relation F = ma is usually applied to a force that is acting on a point mass (often

referred to as a “particle”). However, it can also be applied to an extended rigid body. Then a is

defined as the acceleration of the center of mass.

Worked Example 1.1 Determine the acceleration of a block of mass m sliding down an

inclined plane of angle θ . Assume the coefficient of sliding friction is μ. See Figure 1.1.

Solution The forces acting on the block are gravity mg (downwards), the normal force N

(perpendicular to the plane), and the frictional force μN (parallel to the plane). These forces

are illustrated in Figure 1.1(a). The free-body diagram with all of the forces acting at the center

of mass of the block is shown in Figure 1.1(b). In a problem such as this one, it is convenient

to assume the axes are parallel to and perpendicular to the surface of the plane as indicated in

Figure 1.1(c).
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6 1 A BRIEF REVIEW OF INTRODUCTORY CONCEPTS

There is no acceleration perpendicular to the plane so the net force in that direction must

be zero. Consequently, N = mg cos θ . The net force down the plane is Fd = mg sin θ − μN .

The acceleration of the block is

a =
Fd

m
= g sin θ − μg cos θ .

N

mg mg

N
f

y

x

(a) (b) (c)

f = µN

Figure 1.1 A block sliding down an inclined plane with friction. Sketch (a) shows the forces acting on

the block. Sketch (b) shows the free-body diagram. Sketch (c) shows the x- and y-axes inclined so that they

are parallel and perpendicular to the plane.

Exercise 1.2

Two blocks of mass M1 and M2 are tied together. They are sitting on a smooth frictionless

surface as shown in Figure 1.2. A force F is applied to the free string attached to M1. What is

the tension in the string between the two blocks? Answer: T = M2F/(M1 + M2). �

Exercise 1.3

A block of mass 25 kg is held in place on an inclined plane of angle 30◦ as shown in

Figure 1.3. The coefficient of static friction is 0.4. (a) Draw the free-body diagram. What

forces act on the block? (b) What is the tension in the string? (c) If the string is cut, what is the

acceleration of the block? Answers: (b) T = 122.5 N, (c) a = 1.51 m/s2. �

M2

T F
M1

Figure 1.2 Two blocks on a smooth frictionless surface

connected by a massless string.

m

30º

Figure 1.3 A block on an inclined plane.
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1.3 Work and Energy 7

1.3 Work and Energy

This section outlines some aspects of work and energy. An in-depth study is presented in

Chapter 5.

Let us begin with the concept of work. Imagine pushing a box along a horizontal surface, such

as a tabletop. The force you are applying can be denoted by F. As you might expect, there will

be opposing forces such as friction, air resistance, etc., but for now we are interested only in the

force you are exerting. If you push the box from r1 to r2, the work you do on it is defined to be

W =

∫ r2

r1

F · dr. (1.6)

Power is defined as the work done per unit time. Suppose a force F acts on a particle for an

infinitesimal time interval, from t to t + dt . The work done during this interval is dW = F · dr.

Therefore, the power is

P =
dW

dt
=

F · dr

dt
.

Since dr/dt ≡ v, another expression for power is P = F · v.

When we do work on an object, we usually change its energy. The mechanical energy of an

object is either kinetic energy (energy of motion) or potential energy (energy of position). For a

particle of mass m moving with speed v the kinetic energy (denoted by T ) is given by

T =
1

2
mv2. (1.7)

The potential energy of an object of mass m raised a height h above the surface of the Earth is

given by

V = mgh. (1.8)

We shall often be interested in the potential energy of a stretched or compressed spring. The

potential energy of such a system is given by

V =
1

2
kx2, (1.9)

where k is the spring constant and x represents the amount the spring is stretched or compressed.

There is a very important relationship between potential energy and force. Consider Equation

(1.8), but express it as V = mgz, where z is the height above some reference surface and V is

the potential energy of an object raised to height z in the gravitational field near the surface of the

Earth. The force of gravity on the object is mg. Note that

F =
dV

dz
=

d

dz
(mgz) = mg.

Similarly, the force exerted by a spring is F = kx and the potential energy stored in a spring

is V = 1
2
kx2. Consequently,

F =
dV

dx
=

d

dx

1

2
kx2 = kx.

Thus it would seem that force is the derivative of potential energy with respect to position.

That is not quite correct. For one thing, the sign on F is wrong and for another thing, we obtained

a scalar. That is, in our examples we just evaluated the magnitude of the force, but we know that

force is a vector. The correct relationship between force and potential energy is

F = −∇V . (1.10)
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8 1 A BRIEF REVIEW OF INTRODUCTORY CONCEPTS

This is discussed in detail in Chapter 5, but it is useful at this stage to remember that force and

potential energy are related to one another. Forces that can be derived from a potential energy as

given by Equation (1.10) are called conservative forces.

If the only work done on a system is due to conservative forces the sum of kinetic energy and

potential energy is constant (T +V = constant). This is called the law of conservation of energy.

Exercise 1.4

A rock is thrown upward from the top of a 30 m building with a velocity of 5 m/s. Determine

its velocity (a) when it falls back past its original point, (b) when it is 15 m above the street,

and (c) just before it hits the street. Answer: (a) −5 m/s, (c) 24.76 m/s. �

Exercise 1.5

A horse drags a 100 kg sled a distance of 4 km in 20 min. The horse exerts one horsepower,

of course. What is the coefficient of sliding friction between the sled and the ground? Answer:

μk = 0.23. �

1.4 Momentum

In Chapter 6 you will encounter a detailed study of linear momentum. Here I just want to remind

you of a few facts from introductory mechanics.

A moving particle is characterized by having a particular momentum. When we use the term

“momentum” we usually are referring to the linear momentum, not to be confused with the

angular momentum, which we will define in a little while.

Momentum is a vector defined as mass times velocity and is denoted by the letter p. Thus,

p = mv. (1.11)

If the mass of a body is constant, the time derivative of the momentum is

dp

dt
=

d(mv)

dt
= m

dv

dt
= ma = F.

In Equation (1.5) we wrote F = ma and called it Newton’s second law. But that is only valid

if the mass is constant. We now appreciate that a more general expression of Newton’s second

law is

F =
dp

dt
. (1.12)

This relationship is valid even if the mass is not constant. In fact, it is the most general statement

of Newton’s second law.

The force F appearing in Newton’s second law is the net or total vector sum of all forces acting

on the body. Consequently, we appreciate that if the net force is zero, the time derivative of the

momentum is zero. That is, the momentum of the body is constant. This is called the law of

conservation of momentum.

Exercise 1.6

A 1500 kg car traveling East at 40 km/h turns a corner and speeds up to a velocity of 50 km/h

due North. What is the change in the car’s momentum? Answer: 26 700 kg m/s at 38.7◦ West

of North. �
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1.5 Rotational Motion

1.5.1 Rotational Kinematics

The motion of a rigid body rotating about a fixed axis is mathematically identical to one-

dimensional linear motion. Recall that kinematics is a study of the relationship between position,

velocity, acceleration, and time. Rotational kinematics deals with angular position (θ), angular

velocity (ω), and angular acceleration (α), where angular velocity is defined by

ω ≡
dθ

dt
,

and angular acceleration is

α ≡
dω

dt
=

d2θ

dt2
.

You will discover in Chapters 7, 16, and 17 that rotational motion can be very complicated.

To keep things simple for the moment, consider the special case of a symmetrical body rotating

about a fixed axis, such as the wheel illustrated on the left side of Figure 1.4.

For a fixed, stationary axis, the center of the wheel is at rest. All other points are moving in

circles around it. If you looked straight down the axis you would see the circle shown on the right

side of Figure 1.4. Point P is on the rim of the wheel. The angular position of P is given by the

angle between some fixed line and the radius vector to P . If the wheel is turning, after a time dt

point P will have moved a distance ds to P ′. Recall from geometry that ds = rdθ , where dθ (in

radians of course!) is the angle subtended by the arc PP ′ = ds. Point P moves with speed

v =
ds

dt
=

rdθ

dt
= rω.

The speed of point P is called the “tangential speed” because instantaneously P is moving

tangent to the rim of the wheel. It is sometimes convenient to write the tangential speed as vT .

Then

vT = rω. (1.13)

Taking the time derivative of vT yields the tangential acceleration aT ,

aT =
dv

dt
=

d

dt
(rω) = r

dω

dt
,

where we used the fact that r is constant. But dω
dt

= α, so

aT = rα. (1.14)

This is the relationship between the tangential acceleration aT and the angular acceleration α.

Fixed line

P

P'

r

q

dq

ds

Figure 1.4 A wheel mounted on a fixed axis. The wheel is allowed to rotate but not to translate.
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10 1 A BRIEF REVIEW OF INTRODUCTORY CONCEPTS

It is often convenient to express angular velocity and angular acceleration as vectors (ω) and

(α) directed along the axis of rotation.

Exercise 1.7

A wheel initially spinning at ω0 = 50.0 rad/s comes to a halt in 20.0 seconds. Determine

the constant angular acceleration and the number of revolutions it makes before stopping.

Answers: −2.5 rad/s2, 79.6 rev. �

1.5.2 Rotational Dynamics

Rotational dynamics is the analysis of the motion of a body subjected to external torques.

Consider a body constrained to rotate about a fixed axis, as shown in Figure 1.5. I drew the

body in the shape of a plane lamina for simplicity. Let a force F act on the body at a point on its

rim. Let us assume (again for simplicity) that F is perpendicular to the axis of rotation. The point

of application of F is specified by the vector r whose origin is at the axis of rotation.

The body cannot accelerate linearly because the axis is fixed. The applied force causes the

body to rotate about the axis. The tendency of a force to cause a rotation is called the moment of

the force, or more commonly, the torque. Just as you can think of a force as a pull, you can think

of a torque as a twist.

The ability of a force to produce a rotation depends not only on the magnitude of the force, but

also on its direction and on the location of the point where the force is applied to the body.

To define torque draw a line having the direction of the force and passing through the point

where the force is applied. This is called the “line of action of the force.” (See Figure 1.6.) Next

draw a line that starts at the axis of rotation and intersects the line of action at a 90◦ angle. This

r

F

Axis of rotation

Figure 1.5 Illustration of torque. The laminar body is free to

rotate around the fixed axis of rotation. The vector r, with

origin at the axis, specifies the point of application of the

force.

Line of action

of the force

Lever arm

Axis of

rotation

q

r

F

Figure 1.6 Definition of lever arm. The axis of

rotation is perpendicular to the plane of the figure.
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