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COMPOUND RENEWAL PROCESSES

Compound renewal processes (CRPs) are among the most ubiquitous models used

in applications of probability. At the same time, they are a natural generalization of

random walks, the most well-studied classical objects in probability theory. This

monograph, written for researchers and graduate students, presents the general

asymptotic theory and generalizes many well-known results concerning random

walks. The book contains the key limit theorems for CRPs, functional limit

theorems, integro-local limit theorems, large and moderately large deviation

principles for CRPs in the state space and in the space of trajectories, including

large deviation principles in boundary crossing problems for CRPs, with an explicit

form of the rate functionals, and an extension of the invariance principle for CRPs to

the domain of moderately large and small deviations. Applications establish the key

limit laws for Markov additive processes, including limit theorems in the domains of

normal and large deviations.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in

mathematics or mathematical science and for which a detailed development of the

abstract theory is less important than a thorough and concrete exploration of the

implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their

subjects comprehensively. Less important results may be summarized as exercises

at the ends of chapters. For technicalities, readers can be referred to the

bibliography, which is expected to be comprehensive. As a result, volumes are

encyclopedic references or manageable guides to major subjects.
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Introduction

The Objects of Study

Compound renewal processes (CRPs) are among the most common mathematical

models in many applications of probability theory, such as queuing theory, insurance

theory, risk theory, and others. They are also used in theoretical research, for example,

in the study of Markov additive processes (see [95, 96]). At the same time they are

a natural generalization of random walks, the most well-studied classical objects

in probability theory. The new general asymptotic theory of CRPs constructed in this

monograph is therefore both of applied interest and generalizes many well-known

results of probability theory related to random walks (see, e.g., A.A. Borovkov’s

monograph [23]). Some of the results obtained in this monograph for CRPs turned

out to be new for the special case of random walks as well (see, e.g., Chapter 7).

Suppose we are given a random vector (τ1, ζ1) and a sequence of independent iden-

tically distributed random vectors (τ, ζ ), (τ2, ζ2),. . . independent of (τ1, ζ1), where

τ1 ≥ 0, τ > 0. We set

Tn :=

n
∑

j=1

τj, Zn :=

n
∑

j=1

ζ j for n ≥ 1, T0 = Z0 = 0. (1)

For t ≥ 0, we put

η(t) := min{k ≥ 0 : Tk > t}, ν(t) := η(t) − 1. (2)

Clearly,

ν(t) = max{k ≥ 0 : Tk ≤ t}

for all t ≥ 0.

The random processes η(t) and ν(t) are called renewal processes (or simple renewal

processes).

The term “renewal process” first appeared in connection with “technical” applied

problems in which failures and renewals of some devices such as electrical gadgets

are present, the lifetimes of the devices usually being random (see, e.g., [53]). Let

τ1, τ2, . . . be the trouble-free operation times of the devices. After time τj , a failure
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xii Introduction

occurs and the faulty device is subject to renewal (or replacement). Assume that

renewal (replacement) occurs instantly. Then ν(t) will be the number of renewals

that occur before time t if we do not count the “renewal” at time t = 0. The number

of renewals will be equal to η(t) if we assume that a renewal occurs at t = 0.

In almost all applied problems, the properties of the distribution of τ1 depend on

when we start observing the system. If we know that a renewal occurs at time t = 0,

then we can assume that τ1, τ2, . . . are identically distributed. But if we start observing

at some time and we do not know when the last renewal occurred, then it is natural

to assume that the time τ1 until the first renewal after the beginning of observation

has in general a distribution different from the distribution of the intervals τ2, τ3, . . .

between subsequent renewals.

We will now introduce a wider class of processes.

Definition 1 The process

Z (t) := Zν(t), t ≥ 0 (3)

is called a compound (or generalized) renewal process (a CRP).

The sequence
{

(τj, ζ j )
}

will be called the governing sequence of the CRP.

As we have already mentioned, CRPs arise as a mathematical model in many

applied problems, for example, in queuing theory and insurance theory. The standard

generally accepted model of a CRP assumes that the time τ1 of the first jump and

the size ζ1 of this jump have a joint distribution in general different from the joint

distribution of (τ, ζ ) (see, e.g., [53], [5]). This is the case, for example, for a class of

CRPs important from an applications point of view, those with stationary increments

(see §1.1.2). If (τ1, ζ1) =
d

(τ, ζ ), then the process Z (t) is called a homogeneous CRP;

otherwise, it is called inhomogeneous.

The trajectories of Z (t) on [0,∞) for τ1 > 0 have the following form:

Z (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

0 if t ∈ [0, τ1),

ζ1 if t ∈ [τ1,T2),

Z2 if t ∈ [T2,T3) and so on;

(4)

they are right-continuous. If τ1 = 0 (this is not excluded since τ1 ≥ 0 by assumption),

then the set [0, τ1) is empty, Z (t) = ζ1 for t ∈ [0, τ2), and so, the process Z (t) on the

event {τ1 = 0} can be regarded as a homogeneous CRP with initial value Z (0) = ζ1.

Let us give two examples in which the process Z (t) plays a key role in describing

the work of the system under study. First, we consider the simplest problem in queuing

theory. Customers with service times ζ1, ζ2, . . . arrive at the queueing system at times

T1,T2, . . . , respectively. For example, the customers could be airplanes arriving for

landing at a busy airport: They arrive at times T1,T2, . . ., and the time needed for

the landing of the jth plane is equal to ζ j . Or the context could be an information

processing system, which receives information in packets at times T1,T2, . . ., the jth

packet requiring time ζ j for its processing.
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In such systems, Z (t) = Zν(t) is the time required for serving the customers

received by time t. Suppose that the system under consideration is a queuing system

(the customers that find the system busy join a queue). An important characteristic

of such a system is the “virtual” waiting time W (t) before the customer that arrives

at time t starts to be serviced. It is not hard to see that W (t) satisfies the equation

dW (t) =
⎧⎪⎨
⎪
⎩

dZ (t) − dt if W (t) > 0,

dZ (t) if W (t) = 0,

which has an explicit solution

W (t) = Z (t) − t − inf
0≤u≤t

(

0, Z (u) − u
)

(5)

(the trajectory of W (t) is obtained from the trajectory of Z (t) − t by means of

a “stopping” barrier at point 0). If, for example, τj and ζ j are independent, then (5)

implies that the limiting distribution of W (t) as t → ∞ coincides with the distribution

of sup0≤t<∞

(

Z (st) (t)−t) (see, e.g., [17, §6]), where Z (st) (t) is a CRP with stationary

increments, i.e., the process Z (t) with a specially chosen distribution of τ1 (see

§1.1.2).

The second example is concerned with the operations of an insurance company. Let

T1,T2, . . . be the times of significant claim payouts and let ζ1, ζ2, . . . be the amounts

of these payments, respectively. Further, let r be the premium rate (the amount re-

ceived by the company from insured customers per time unit). If x is the company’s

initial surplus, then its surplus at time t is equal to x + rt − Z (t). This means that if

infu≤t
(

x + ru − Z (u)
)

< 0, then the company will go bankrupt by time t. In other

words, the probability of ruin prior to time t is equal to P
(

supu≤t
(

Z (u) − ru
)

> x
)

.

This is the classical ruin probability problem, which is the subject of many publica-

tions including monographs (see, e.g., [9], [4]–[6], [63]). It is considered in §6.7.

In both examples, the objects of study are the probabilities that the trajectory of

the process Z (u) crosses some boundary prior to time t. Problems of this kind are

called boundary crossing problems for the CRP. They are considered in §1.6 and in

Chapters 4 and 6.

CRPs also appear in theoretical research. For example, they emerge when studying

the asymptotic laws for Markov additive processes (sums of random variables defined

on the states of Markov chains). If the chain is Harris, then it has a positive atom,

sometimes an “artificial” one. If we construct cycles (of respective lengths τ1, τ2, . . .)

generated by the returns of the chain to a positive atom and denote by ζ1, ζ2, . . .

the increments of the sums on these cycles, then we obtain independent identically

distributed vectors (τj, ζ j ), which define the corresponding CRP Z (n) (time t = n is

discrete in this case). Using this process and the results presented in this monograph,

one can obtain all the main limit laws for Markov additive processes (see §§1.8, 2.5,

5.7, and the references therein).

Alongside the CRP Z (t), we will also consider stochastic processes

Y (t) := Zη(t) = Zν(t) + ζη(t), t ≥ 0. (6)
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xiv Introduction

They will also be referred to as CRPs. The trajectories of Y (t) on [0,∞) have the

following form for τ1 > 0:

Y (t) =
⎧⎪⎨
⎪
⎩

ζ1 if t ∈ [0, τ1),

Z2 if t ∈ [τ1,T2) and so on.

When τ1 = 0, there are changes similar to those mentioned after (4). We will show

that the limit laws in the domain of normal deviations to be studied in Chapters 1

and 2, under appropriate conditions, are the same for the CRPs Z (t) and Y (t). In the

domain of large deviations (see Chapters 3 and 6), this is not always the case.

Since η(t) is a Markov time, the processes Y (t) = Zη(t) have a somewhat simpler

structure, and, in a number of cases, it is more convenient to study these processes.

If τ1 ≡ τ ≡ 1, then the CRP

Z (t) = Z
(

[t]
)

= Z[t]

becomes the sequence of partial sums Z[t] of the random variables ζ j , i.e., a random

walk. This object has been extensively studied.

If ζ1 ≡ ζ ≡ 1, then Z (t) = ν(t) = η(t)−1, where η(t) is a simple renewal process.

For this process, P
(

η(t) > n
)

= P(Tn ≤ t), and the problem of studying the distri-

bution of η(t) reduces to studying the distribution of sums of random variables – this

time, of the sums Tn. Clearly, similar observations are also valid for the CRP Y (t).

If (τ1, ζ1) =
d

(τ, ζ ), while τ and ζ are independent,

P(τ > �) = e−λ�, � ≥ 0, λ > 0, (7)

then the process Z (t) becomes a compound Poisson process, i.e., a process with in-

dependent increments.

If, instead of (7), we have

P(τ = k) = (1 − q)qk, q ∈ (0, 1), k = 0, 1, . . . ,

or P(τ = 1) = 1, then, as in the case of (7), the sequence Z (k) is a process

with independent increments but in discrete time, i.e., a sequence of partial sums

of independent identically distributed random variables (a random walk).

A Short History and the Contents of the Book

The study of CRPs is the topic of many publications. A number of general results

are known such as the strong law of large numbers, the central limit theorem (see,

e.g., the textbook by A.A. Borovkov [21, §10.6]), the law of the iterated logarithm,

the invariance principle (see M. Csörgo, L. Hervatt, and J. Steinebach [55], [112];

A. Gut [72, Chapter 5]). The proofs in these publications rely upon a very complex

technique and are simplified in Chapter 1. In the monograph [38, Chapter 16] by

A.A. Borovkov and K.A.Borovkov, large deviation probabilities for CRPs and their

www.cambridge.org/9781009098441
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-09844-1 — Compound Renewal Processes
A. A. Borovkov , Translated by Alexey Alimov 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction xv

trajectories are studied in the case when the jumps of the process have distributions

regularly varying at infinity.

A significant portion of the published work related to CRPs concerns applications

or rather special problem formulations. The body of work is fragmented in nature

and does not deal with the main directions of interest. From 2008 to 2019, a major

cycle of works by the author, K.A. Borovkov, A.A. Mogul’skii, and E.I. Prokopenko

appeared (many of which are joint works) devoted to limit laws for CRPs. These

works served as the basis of this book.

The goal of this monograph is a systematic exposition of the asymptotic theory

of CRPs in its general form. It comprises analogs and generalizations of all the main

limit laws established for random walks presented, for example, in [23]. This is the

first presentation of the theory in monographic literature. It is of both theoretical and

applied interest.

The theory contains:

• the basic limit theorems for CRPs in the domain of normal deviations (with the

functional limit theorems), including the case of infinite variance of the jumps of

the process; the law of the iterated logarithm and its analogs (Chapter 1);

• integro-local limit theorems for CRPs in the domains of normal, moderately large

and large deviations (Chapters 2 and 5);

• large and moderately large deviation principles for CRPs in the state space and in

the space of trajectories, including large deviation principles in boundary crossing

problems for CRPs, with an explicit form of deviation function (rate function)

(Chapters 3 and 4);

• limit theorems describing the sharp asymptotics in boundary crossing problems

for CRPs (Chapter 6);

• extension of the invariance principle for CRPs to the domain of moderately large

and small deviations (Chapter 7); the results of Chapter 7 turn out to be new for

random walks as well.

We apply the theory to establish the main limit laws for Markov additive processes

including functional limit theorems in the domains of normal and large deviations

(§§1.8, 3.6, and 5.7).

The above suggests that a significant portion of the monograph (Chapters 3–7)

is concerned with studying large deviation probabilities for CRPs. Mathematically,

this is the most content-rich and difficult part of the theory we present. Note that

an essential role here is played by the following circumstance. It turns out that there

exists a function that encapsulates all information about the asymptotic behavior of

the distribution of the CRP on increasing time intervals. We found and studied it, and

call it the fundamental function (see §3.5). For a random walk (which is a special case

of CRP), the fundamental function is equal to the logarithm of the Laplace transform

of the jump distribution. In the general case, the fundamental function plays the

same role as this transform, but instead of explicit equalities there will be analogous

asymptotic relations as time grows.
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A vast literature including several monographs is devoted to large deviations prob-

lems for random processes. Its main concern is the study of “rough” asymptotics

(asymptotics of the logarithms) of the probabilities of the corresponding rare events

for a wide class of processes. The main approaches and a survey of the results can

be found, for example, in the monographs by J. Feng and T.G. Kurtz [64] and

A. Dembo and O. Zeitouni [57] (see also the bibliography therein). In our case,

in studying CRPs, we use more effective and more constructive direct approaches

based on knowledge of the specific nature of CRPs, defined in (3), which makes

it possible to find the fundamental function. They enable us to obtain in Chapters

3–7 much more advanced results including (a) the large deviation principle (LDP)

in Chapters 3 and 4, with an explicit form of the deviation rate functional which is

defined by the Legendre transform of the fundamental function; (b) in Chapters 5–7,

solutions to more difficult problems on the sharp asymptotics of the large deviation

probabilities.

The exposition in §§1.5–1.7 and Chapters 2, 6, and 7 is based on the author’s pa-

pers [25], [30]–[36]. The exposition in Chapters 3–5 relies on the author’s papers [26,

34] and on joint work with A.A. Mogul’skii [39], [44]–[48] (with E.I. Prokopenko

as coauthor in [48] as well). The monograph also contains a number of previously

unpublished results.

In the study of the large deviation probabilities of CRPs in Chapters 3–7, we

assume that Cramér’s moment condition is met (fast decay at infinity of the jump

distributions). For the case where the jump distributions vary regularly at infinity

(slow decay), in Chapter 8, for the sake of completeness, we present a number

of results from [38, Chapter 16] without proofs.

The creation of a general asymptotic theory of CRPs under Cramér’s condition

became possible owing to the previous work in the following three areas:

• limit theorems on the asymptotics of the renewal measure in the domain of large

deviations for multidimensional random walks (see A. A. Borovkov and A. A.

Mogul’skii [39, 44]);

• large deviations of multidimensional random walks (see, e.g., A.A. Borovkov’s

monograph [23]); in applications to CRPs, approaches related to so-called local

large deviation principles are very useful;

• Stone’s integro-local theorems for random walks (see [114, 115]; they are partic-

ularly important as research tools).

The possession of the results and techniques in these three areas is necessary for

a sufficiently complete asymptotic analysis of CRPs.
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