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1

Main Limit Laws in the Normal Deviation Zone

1.1 Preliminary Results

1.1.1 Convergence of Distributions and Moments of Some Functionals

of CPRs

Compound renewal processes (CRPs) Z (t), Y (t) were defined in the introduction

(see (1)–(6)). Their definition is based on the governing sequence of vectors {τj, ζ j },
the sums

Tn =

n
∑

j=1

τj, Zn =

n
∑

j=1

ζ j,

and the renewal processes η(t) = min{k : Tk > t} and ν(t) = max{k : Tk ≤ t} =
η(t) − 1. In this notation,

Z (t) = Zν(t), Y (t) = Zη(t) .

To describe the properties of the CRPs Z (t), Y (t), we need some more notation.

Let χ(t) be the first overshoot over level t by the random walk {Tk }∞k=1
,

χ(t) := Tη(t) − t, (1.1.1)

and let

γ(t) := t − Tν(t) (1.1.2)

be the corresponding undershoot. We also set

ζ (t) := ζη(t), τ(t) := τη(t),

so that

γ(t) + χ(t) = τ(t).

In what follows, it is always assumed that

Eτ =: aτ and Eζ =: aζ
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2 Main Limit Laws in the Normal Deviation Zone

both exist, and hence the “mean drift”

a :=
aζ

aτ

of the CRP is defined. The name “mean drift” is reasonable, because we shall show

that

EZ (t)

t
→ a,

Z (t)

t
→
a.s.

a as t → ∞.

The same relations also hold for Y (t). In what follows, the assumption that aτ , aζ

exist and are finite will generally not be repeated.

The distribution of (τ1, ζ1) can be arbitrary; the conditions related to this vector

will be specified if necessary.

Below, we will also use the renewal function corresponding to the sequence {Tk };
in the homogeneous case, we denote it by

H (t) =

∞
∑

k=0

P(Tk ≤ t).

In the inhomogeneous case τ1 �
d
τ, it is denoted by H̃ (t).

We have

{

η(t) > k
}

= {Tk ≤ t},

and hence, in the homogeneous case,

Eη(t) =

∞
∑

k=1

P
(

η(t) ≥ k
)

=

∞
∑

k=0

P
(

η(t) > k
)

=

∞
∑

k=0

P(Tk ≤ t) = H (t), (1.1.3)

Tη(t) = t + χ(t)

and so, by the Wald identity,

ETη(t) = aτEη(t) = t + Eχ(t),

Eη(t) = H (t) =
t + Eχ(t)

aτ
.

(1.1.4)

Lemma 1.1.1 Let the distribution of τ be nonlattice. Then

(i) The proper limit distributions

lim
t→∞

P
(

γ(t) ≥ u, χ(t) ≥ �, ζ (t) ≥ �
)

=

1

aτ

∫ ∞

u

P(τ ≥ y + �, ζ ≥ �) dy, (1.1.5)

lim
t→∞

P
(

ζ (t) ≥ �
)

=

E(τ; ζ ≥ �)

aτ
(1.1.6)

always exist.

(ii) In the homogeneous case, there exist constants c1 ∈ (0,∞) and c2 ∈ (1/aτ,∞)

such that
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1.1 Preliminary Results 3

sup
t

P
(

γ(t) ≥ u, χ(t) ≥ �, ζ (t) ≥ �
)

≤ c1P(τ ≥ u + �, ζ ≥ �) + c2

∫ ∞

u

P(τ > y + �, ζ ≥ �) dy. (1.1.7)

In the inhomogeneous case, the term P(τ1 ≥ u+ �, ζ1 ≥ �) is added to the right-hand

side of (1.1.7).

(iii) If Eτk−1
1
< ∞ and Eτk < ∞, then

Eγk (t) = o(t), Eχk (t) = o(t) as t → ∞. (1.1.8)

If Eτk
1
< ∞ and Eτk+1 < ∞, then for nonlattice τ,

Eγk (t) → Eτk+1

(k + 1)aτ
, Eχk (t) → Eτk+1

(k + 1)aτ
as t → ∞. (1.1.9)

If Eeλτ1 < ∞ and Eeλτ < ∞ for λ > 0, then

Eeλγ(t) → Eeλτ − 1

aτλ
as t → ∞. (1.1.10)

The same relation also holds for χ(t).

If f is a measurable function and E�� f (ζ1)�� < ∞, Eτ�� f (ζ )�� < ∞, then

E f
(

ζ (t)
)

→ E(τ f (ζ ))

aτ
as t → ∞. (1.1.11)

The lemma shows that the limit values of the moments of the random variables

γ(t), χ(t), ζ (t) coincide with the moments of the variables γ∞, χ∞, ζ∞, whose joint

distribution is given by

P(γ∞ ≥ u, χ∞ ≥ �, ζ∞ ≥ �) =
1

aτ

∫ ∞

u

P(τ ≥ y + �, ζ ≥ �) dy (1.1.12)

(see (1.1.5)).

If the distribution of τ is arithmetic, then the integrals in (1.1.12) are replaced by

sums – this slightly changes the values of the right-hand sides in (1.1.9) and (1.1.10).

Proof of Lemma 1.1.1 (i) For homogeneous CRPs, in view of the main renewal

theorem for nonlattice τ, we have

P
(

γ(t) ≥ u, χ(t) ≥ �, ζ (t) ≥ �
)

=

∞
∑

k=1

∫ t−u

0

P(Tk ∈ dy)P(τ ≥ t − y + �, ζ ≥ �)

=

∫ t−u

0

dH (y)P(τ ≥ t − y + �, ζ ≥ �) → 1

Eτ

∫ ∞

u

P(τ ≥ y + �, ζ ≥ �) dy

(1.1.13)

as t → ∞.
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4 Main Limit Laws in the Normal Deviation Zone

If the distribution of (τ1, ζ1) differs from the general distribution of (τ, ζ ), then,

for t > u, we have

P
(

γ(t) ≥ u, χ(t) ≥ �, ζ (t) ≥ �
)

= P(τ1 ≥ t + �, ζ1 ≥ �)

+

∫ t−u

0

P(τ1 ∈ ds)P
(

γ(t − s) ≥ u, χ(t − s) ≥ �, ζ (t − s) ≥ �
)

, (1.1.14)

where, for each fixed s, we have the convergence as t → ∞ of the form (1.1.13)

for the second factor under the integral sign in (1.1.14). This means that for the

inhomogeneous CRPs the left-hand side of (1.1.14) also converges as t → ∞ to

the right-hand side of (1.1.13). This proves (1.1.5). Putting u = � = 0 in (1.1.13),

(1.1.14), we get (1.1.6).

(ii) For the renewal function H (t), there always exist constants c1 > 0 and c2 > 1/aτ

such that

H (t) ≤ c1 + c2t for all t ≥ 0.

On the other hand, the integrand P(τ ≥ t − y + �, ζ ≥ �) in (1.1.13) is increasing

with y. Hence the left-hand side in (1.1.13), which is 0 for t ≤ u, is majorized by

c1P(τ ≥ t + �, ζ ≥ �) + c2

∫ t−u

0

P(τ ≥ t − y + �, ζ ≥ �) dy (1.1.15)

for t ≥ u. This implies (1.1.7).

The additional term on the right of (1.1.7) in the inhomogeneous case is brought

about by the appearance of the first term on the right of (1.1.14).

(iii) Assertion (1.1.8) follows from (1.1.15). If Eτk+1 < ∞, then by (1.1.12) the

function

ukP(γ∞ ≥ u) =
uk

aτ

∫ ∞

u

P(τ ≥ u) dy

is integrable. Hence by assertions (i), (ii) of the theorem, we can apply the dominated

convergence theorem, which implies that

Eγk (t) → Eγk∞ =
1

aτ

∫ ∞

0

y
kP(τ ≥ y) dy =

Eτk+1

(k + 1)aτ
.

The proof of the remaining relations in (1.1.9) is similar. The last assertion follows

from the equality

Eζ (t) = E
(

ζ (t); ζ (t) ≥ 0
)

+ E
(

ζ (t); ζ (t) < 0
)

=

∫ ∞

0

P
(

ζ (t) ≥ �
)

d� −
∫ 0

−∞
P
(

ζ (t) ≤ �
)

d�.

Lemma 1.1.1 is proved. �

In studying the limit distributions of the variables χ(t), ζ (t) as t → ∞, we can also

consider the “triangular array scheme,” when the distribution of the “inhomogeneous”
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1.1 Preliminary Results 5

vector (τ1, ζ1) depends on some parameter N . Such schemes appear, for example,

when considering the processes

ZN (t) = Z (N + t) − Z (N ). (1.1.16)

The role of the initial jumps for ZN (t) will be played by the variables χ(N ) and ζ (N ),

whose distribution depends on N .

Corollary 1.1.2 If in a partial triangular array scheme, the parameter N = N (t)

depends on t so that τ1 = op (t) as t → ∞, then assertions (1.1.5) and (1.1.6) of

Lemma 1.1.1 remain valid. If, moreover, E(τ1; τ1 ≥ t) → 0 and E(ζ1; τ1 ≥ t) → 0

as t → ∞, then assertions (1.1.9) and (1.1.12) for k = 1, f (z) = z also remain valid.

The first assertion of the corollary follows from (1.1.14). The second one follows

from (1.1.9), (1.1.11) for Eχ(t) and Eζ (t).

Corollary 1.1.3 If Eτ1 < ∞, then as t → ∞

H̃ (t) =
t + o(t)

aτ
.

This result follows from (1.1.3), Lemma 1.1.1, and the relations

H̃ (t) = Eη(t) = P(τ1 > t) +

∫ t

0

P(τ1 ∈ ds)
[

1 + Eη0(t − s)
]

= P(τ1 > t) +

∫ t

0

P(τ1 ∈ ds)

(

1 +
t − s + Eχ(t − s)

aτ

)

,

where the first passage time η0(t) corresponds to the homogeneous sequence {Tk }.
Results similar to Lemma 1.1.1 can be found, for example, in [21, §§10.4, 10.6].

1.1.2 CRPs with Stationary Increments

Let us return to the special case (1.1.16). If the initial jumps (τ1,N, ζ1,N ) of the process

ZN (t) are labeled by the index N , then, as already pointed out,

(τ1,N, ζ1,N ) =
d

(

χ(N ), ζ (N )
)

,

so that, by Lemma 1.1.1,

(τ1,N, ζ1,N ) ⇒ ( χ∞, ζ∞) as N → ∞

(the sign “⇒” denotes weak convergence of distributions), where the distribution

( χ∞, ζ∞) is described in (1.1.12). Consider the CRP Z (st) (t) (the meaning of the

index (st) will be explained in Definition 1.1.4) with initial jumps (τ(st), ζ (st)), which

have the same distribution as ( χ∞, ζ∞) (see (1.1.12)),

P(τ
(st)

1
≥ �, ζ (st)

1
≥ �) =

1

aτ

∫ ∞

�

P(τ ≥ y, ζ ≥ �) dy; (1.1.17)
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6 Main Limit Laws in the Normal Deviation Zone

the successive jumps being (τ2, ζ2), (τ3, ζ3),. . . By the above interpretation, for such

a process, the distribution of
(

χ(st) (t), ζ (st) (t)
)

(with obvious agreement in notation)

will be the same for all t ≥ 0 (the distribution of
(

χ(st) (t ′), ζ (st) (t ′)
)

can be looked

upon as the limit distribution of the initial jump of the process ZN ′ (t) = ZN+t′ (t)

with N ′ = N + t ′ → ∞). This means that the distribution of the increments of

Z (st) (u + t) − Z (st) (u) will be the same for all u ≥ 0.

Definition 1.1.4 The process Z (t) with the initial jump distribution (1.1.17) is

called a CRP with stationary increments and is denoted by Z (st) (t).

Let us find the form of the characteristic function ϕ(st) (λ, μ) of the vector (τ
(st)

1
, ζ

(st)

1
).

We set

ϕ(λ, μ) = Eeiλτ+iμζ .

Lemma 1.1.5 (i) The following representation holds:

ϕ(st) (λ, μ) =
ϕ(λ, μ) − ϕ(0, μ)

iλaτ
. (1.1.18)

(ii) The process Z (t) = Z (st) (t) is a homogeneous CRP if and only if Z (t) is

a compound (generalized) Poisson process, that is, τ and ζ are independent, and

P(τ > x) = e−x/aτ .

Proof of Lemma 1.1.5 (i) In view of (1.1.17) we have

ϕ(st) (λ, μ) =

∫ ∞

0

eiλ�
∫ ∞

−∞
eiμ�P(τ

(st)

1
∈ d�, ζ

(st)

1
∈ d�)

=

1

aτ

∫ ∞

0

eiλ�
[∫ ∞

−∞
eiμ�P(τ ≥ �, ζ ∈ d�)

]
d�. (1.1.19)

We denote by U (�) the expression in square brackets on the right of (1.1.19) and let

V (�) = eiλ�

iλ
. Hence, integrating by parts (1.1.19), we find that

ϕ(st) (λ, μ) =
1

aτ
U (�)V (�)

���
∞

0
+

1

iλaτ

∫ ∞

0

eiλ�+iμ�P(τ ∈ d�, ζ ∈ d�)

=

1

iλaτ

[

ϕ(λ, μ) − ϕ(ζ ) (μ)
]

,

where ϕ(ζ ) (μ) = Eeiμζ .

(ii) The second assertion follows from the fact that by (1.1.18) the equality

ϕ(st) (λ, μ) = ϕ(λ, μ)

is equivalent to the equality

ϕ(λ, μ) =
ϕ(ζ ) (μ)

1 − iaτλ
.

The lemma is proved. �
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1.1 Preliminary Results 7

From Lemma 1.1.1 it follows that Eτ
(st)

1
< ∞ if Eτ2 < ∞ (see (1.1.9)), and

Eζ (st) < ∞ if Eτ2 < ∞, Eζ2 < ∞ (see (1.1.11)). If τ and ζ are independent, then

Eζ (st) < ∞ if Eτ < ∞, E|ζ | < ∞.

1.1.3 Strong Law of Large Numbers for a Simple Renewal Process η(t)

Lemma 1.1.6 The almost sure convergence

η(t)

t
→
a.s.

1

aτ
as t → ∞ (1.1.20)

always holds.

Proof of Lemma 1.1.6 Consider the function Tt := T[t] of the real variable t. For

this function, by the strong law of large numbers

Tt

t
→
a.s.

aτ,

as t → ∞. That is, for any ε > 0, there exists a (random) number t0 = t0(ε) < ∞
such that Tt lies between the rays y = (aτ ± ε)t for all t > t0. This means that the

function η(y) = min{t : Tt > y}, which is the inverse of Tt , lies for all y ≥ t0(aτ + ε)

between the rays

t =
y

aτ ± ε
.

But this means that (1.1.20) holds. Lemma 1.1.6 is proved. �

1.1.4 Almost Sure Convergence of Some Functionals of CRPs

Consider some measurable function g(t, y) ≥ 0 and set, for brevity,

g = g(τ, ζ ), gn = g(τn, ζn), gn = max
k≤n

gk .

Let V (x) be some nondecreasing regularly varying function on [0,∞), that is, a func-

tion with the representation

V (x) = xαl (x), x ≥ 0, α > 1, (1.1.21)

where l (x) is a slowly varying function as x → ∞. We let V (−1) (y) denote the inverse

function of V (x),

V (−1) (y) := inf
{

x : V (x) ≥ y
}

.

The function V (−1) (y) is also a regularly varying function (with exponent 1/α);

see, for example, Theorem 1.1.3 in [38].

Similarly, if

F (x) = x−αl (x) (1.1.22)
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8 Main Limit Laws in the Normal Deviation Zone

is a regularly varying at infinity function with exponent −α, then the function

σ(u) := F (−1) (1/u) = inf
{

x : F (x) < 1/u
}

is also a regularly varying at infinity function (with exponent 1/α).

Lemma 1.1.7 (i) If (1.1.21) holds and EV (g) < ∞, then, as n → ∞, t → ∞,

gn

V (−1) (n)
→
a.s.

0,
gη(t)

V (−1) (t)
→
a.s.

0. (1.1.23)

(ii) If P(g ≥ x) ≤ cF (x), c = const, F (x) = x−αl (x), then, for any θ > 1/α,

n → ∞, t → ∞,

gn

σ(n)(ln n)θ
→
a.s.

0,
gη(t)

σ(t)(ln t)θ
→
a.s.

0. (1.1.24)

(iii) If P(g ≥ x) = o
(

F (x)
)

as x → ∞, then

gn

σ(n)
→
p

0,
gη(t)

σ(t)
→
p

0 (1.1.25)

as n → ∞, t → ∞, respectively.

Proof of Lemma 1.1.7 (i) We first consider the homogeneous case. Let us show that

gn

V (−1) (n)
→
a.s.

0 as n → ∞. (1.1.26)

For any ε > 0,

∞
∑

n=1

P
(

gn ≥ εV (−1) (n)
)

≤
∫ ∞

0

P
(

g ≥ εV (−1) (t)
)

dt=

∫ ∞

0

P

(

V

(

g

ε

)

≥ t

)

dt=EV

(

g

ε

)

.

(1.1.27)

Since V (g/ε) ∼ ε−αV (g) as g → ∞, we have

EV

(

g

ε

)

≤ c + 2ε−αEV (g) < ∞, c = const. (1.1.28)

Now (1.1.26) follows from (1.1.27), (1.1.28) and the Borel–Cantelli lemma, because

only a finite number of events
{

gn ≥ εV (−1) (n)
}

occur with probability 1.

Let us now prove the first relation in (1.1.23). From (1.1.26) it follows that there

exists a random number n0 = n0(ε) such that

gn < εV
(−1) (n) for all n ≥ n0. (1.1.29)

Moreover, there always exists a number m0 ≥ n0 such that gn0
< εV (−1) (m0), and

hence, by (1.1.29),

gn0+1 < εV
(−1) (m0), . . . , gm0

< εV (−1) (m0).

Another appeal to (1.1.29) shows that gn < εV
(−1) (n) for all n ≥ m0. But this means

that

gn

V (−1) (n)
→
a.s.

0 as n → ∞. (1.1.30)
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1.1 Preliminary Results 9

We have η(t) →
a.s.
∞ as t → ∞, and now from (1.1.30) we get

gη(t)

V (−1) (η(t))
→
a.s.

0 as t → ∞.

Moreover, by Lemma 1.1.6,

η(t)

t
→
a.s.

1

aτ
,

V (−1) (η(t))

V (−1) (t)
→
a.s.

a−1/α
τ .

This proves the second relation in (1.1.23).

(ii) For any δ > 0 and sufficiently large n = nδ , using, for example, Theorem 1.1.3

in [38], we have, for all n ≥ nδ ,

l
(

σ(n)(ln n)θ
)

≤ (ln n)θδ l
(

σ(n)
)

.

Hence, for n ≥ nδ ,

F
(

σ(n)(ln n)θ
)

= σ(n)−α (ln n)−θαl
(

σ(n)(ln(n))θ
)

≤ σ(n)−α (ln n)−θ (α−δ) l
(

σ(n)
)

= (ln n)−θ (α−δ) F
(

σ(n)
)

=

(ln n)−θ (α−δ)

n
.

A similar analysis shows that, for αθ > 1 and δ < αθ−1
θ

, we have θ(α − δ) > 1 and

∞
∑

n=nδ

P
(

gn > σ(n)(ln n)θ
)

≤ c

∞
∑

n=nδ

F
(

σ(n)(ln n)θ
)

≤ c

∞
∑

n=nδ

(ln n)−θ (α−δ)

n
< ∞.

Therefore,

gn

σ(n)(ln n)θ
→
a.s.

0 for θ >
1

α
, n → ∞. (1.1.31)

The remaining part of the proof, in which (1.1.31) is used to derive (1.1.24), is similar

to the proof of assertion (i) of the lemma.

(iii) For any ε > 0,

P
(

gn > εσ(n)
)

≤ nP
(

g > εσ(n)
)

= o
(

nF
(

εσ(n)
))

= o
(

nF
(

σ(n)
))

= o(1) as n → ∞.

This proves the first relation in (1.1.25). The second relation follows from the fact

that

gη(t)

σ(η(t))
→
p

0 and
η(t)

t
→
a.s.

1

aτ
as t → ∞.

It is easily seen that the above arguments do not change if an arbitrary fixed random

vector is considered in place of (τ1, ζ1). Lemma 1.1.7 is proved. �

From Lemma 1.1.7 we have the following result. We set

χ(t) = max
u≤t
χ(u), ζ (t) = max

u≤t
ζ (u).
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10 Main Limit Laws in the Normal Deviation Zone

Corollary 1.1.8 (i)
χ(t)

t
→
a.s.

0,
ζ (t)

t
→
a.s.

0 as t → ∞.

(ii) The following relations hold:

If Eτ2 < ∞, then
χ(t)
√

t
→
a.s.

0.

If Eζ2 < ∞, then
ζ (t)
√

t
→
a.s.

0.

Proof We have Eτ < ∞, E|ζ | < ∞, and hence the first assertion follows from the

first assertion of Lemma 1.1.7 with g(t, y) = t, g(t, y) = |y |, and V (x) = x. The

second assertion follows similarly from Lemma 1.1.7 with V (x) = x2. �

1.2 First Moments of the Processes Z (t) and Y (t). Strong Laws of

Large Numbers

1.2.1 Asymptotics for First- and Second-Order Moments of Z (t)

and Y (t)

We set

ξi = ζi − aτi, Sn =

n
∑

i=1

ξi = Zn − aTn, (1.2.1)

so that ξi for i ≥ 2 are independent copies of the random variable

ξ = ζ − aτ, Eξ = 0. (1.2.2)

Theorem 1.2.1 I. Let Z (t), Y (t) be homogeneous CRPs.

(i) The following relations hold:

EY (t) = a
(

t + Eχ(t)
)

= at + rY (t), rY (t) = o(t), (1.2.3)

EZ (t) = a
(

t + Eχ(t)
)

− Eζ (t) = at + rZ (t), rZ (t) = o(t), (1.2.4)

as t → ∞.

(ii) If Eτ2 < ∞, then in (1.2.3) the asymptotic expansion holds, in which, in the

nonlattice case,

rY (t) =
aζEτ2

2a2
τ

+ o(1). (1.2.5)

If, in addition E|τζ | < ∞, then in (1.2.4)

rZ (t) =
aζEτ2

2a2
τ

− Eτζ

aτ
+ o(1). (1.2.6)

www.cambridge.org/9781009098441
www.cambridge.org

