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Topological data analysis (TDA) has emerged recently as a viable tool for analyzing
complex data, and the area has grown substantially in both its methodologies and
applicability. Providing a computational and algorithmic foundation for techniques in
TDA, this comprehensive, self-contained text introduces students and researchers in
mathematics and computer science to the current state of the field. The book features a
description of mathematical objects and constructs behind recent advances, the
algorithms involved, computational considerations, as well as examples of topological
structures or ideas that can be used in applications. It provides a thorough treatment of
persistent homology together with various extensions – like zigzag persistence and
multiparameter persistence – and their applications to different types of data, like point
clouds, triangulations, or graph data. Other important topics covered include discrete
Morse theory, the mapper structure, optimal generating cycles, as well as recent
advances in embedding TDA within machine learning frameworks.
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“A must-have up-to-date computational account of a vibrant area connecting
pure mathematics with applications.”

- Herbert Edelsbrunner, IST Austria

“This book provides a comprehensive treatment of the algorithmic aspects
of topological persistence theory, both in the classical one-parameter setting
and in the emerging multi-parameter setting. It is an excellent resource for
practitioners within or outside the field, who want to learn about the current
state-of-the-art algorithms in topological data analysis.”

- Steve Oudot, Inria and École Polytechnique
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Preface

In recent years, the area of topological data analysis (TDA) has emerged as
a viable tool for analyzing data in applied areas of science and engineering.
The area started in the 1990s with the computational geometers finding an
interest in studying the algorithmic aspect of the classical subject of algebraic
topology in mathematics. The area of computational geometry flourished in
the 1980s and 1990s by addressing various practical problems and enriching
the area of discrete geometry in the course of doing so. A handful of com-
putational geometers felt that, analogous to this development, computational
topology has the potential to address the area of shape and data analysis while
drawing upon and perhaps developing further the area of topology in the dis-
crete context; see, for example, [26, 116, 119, 188, 292]. The area gained
momentum with the introduction of persistent homology in early 2000 fol-
lowed by a series of mathematical and algorithmic developments on the topic.
The book by Edelsbrunner and Harer [149] presents these fundamental devel-
opments quite nicely. Since then, the area has grown in both its methodology
and applicability. One consequence of this growth has been the development
of various algorithms which intertwine with the discoveries of various mathe-
matical structures in the context of processing data. The purpose of this book
is to capture these algorithmic developments with the associated mathematical
guarantees. It is appropriate to mention that there is an emerging sub-area of
TDA which centers more around statistical aspects. This book does not deal
with these developments, though we mention some of them in the last chapter
where we describe the recent results connecting TDA and machine learning.

We have 13 chapters in the book listed in the table of contents. After
developing the basics of topological spaces, simplicial complexes, homology
groups, and persistent homology in the first three chapters, the book is then
devoted to presenting algorithms and associated mathematical structures in
various contexts of topological data analysis. These chapters present materials

xi
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xii Preface

mostly not covered in any book on the market. To elaborate on this claim, we
briefly give an overview of the topics covered by the present book. Chapter 4
presents a generalization of the persistence algorithm to extended settings such
as to simplicial maps (instead of inclusions), and zigzag sequences with both
inclusions and simplicial maps. Chapter 5 covers algorithms on computing
optimal generators for both persistent and nonpersistent homology. Chapter 6
focuses on algorithms that infer homological information from point cloud
data. Chapter 7 presents algorithms and structural results for Reeb graphs.
Chapter 8 considers general graphs, including directed ones. Chapter 9 focuses
on various recent results on characterizing nerves of covers, including the
well-known mapper and its multiscale version. Chapter 10 is devoted to the
important concept of discrete Morse theory, its connection to persistent homol-
ogy, and its applications to graph reconstruction. Chapters 11 and 12 introduce
multiparameter persistence. The standard persistence is defined over a one-
parameter index set such as Z or R. Extending this index set to a poset such
as Z

d or R
d , we get d-parameter or multiparameter persistence. Chapter 11

focuses on computing indecomposables for multiparameter persistence that are
generalizations of bars in the one-parameter case. Chapter 12 focuses on var-
ious definitions of distances among multiparameter persistence modules and
their computations. Finally, we conclude with Chapter 13, which presents some
recent developments of incorporating persistence into the machine learning
(ML) framework.

This book is intended for an audience comprising researchers and teachers in
computer science and mathematics. Graduate students in both fields will bene-
fit from learning the new materials in topological data analysis. Because of the
topics, the book plays the role of a bridge between mathematics and computer
science. Students in computer science will learn the mathematics in topology
that they are usually not familiar with. Similarly, students in mathematics will
learn about designing algorithms based on mathematical structures. The book
can be used for a graduate course in topological data analysis. In particular, it
can be part of a curriculum in data science which has been/is being adopted in
universities. We are including exercises for each chapter to facilitate teaching
and learning.

There are currently a few books on computational topology/topological data
analysis on the market to which our book will be complementary. The materi-
als covered in this book predominantly are new and have not been covered in
any of the previous books. The book by Edelsbrunner and Harer [149] mainly
focuses on early developments in persistent homology and do not cover the
materials in Chapters 4–13 in this book. The recent book of Boissonnat et al.
[39] focuses mainly on reconstruction, inference, and Delaunay meshes. Other
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Preface xiii

than Chapter 6, which focuses on point cloud data and inference of topological
properties, and Chapters 1–3, which focus on preliminaries about topologi-
cal persistence, there is hardly any overlap. The book by Oudot [250] mainly
focuses on algebraic structures of persistence modules and inference results.
Again, other than the preliminary Chapters 1–3 and Chapter 6, there is hardly
any overlap. Finally, unlike ours, the books by Tierny [286] and by Rabadán
and Blumberg [260] mainly focus on applying TDA to specific domains of
scientific visualizations and genomics, respectively.

This book, as any other, is not created in isolation. Help coming from vari-
ous corners contributed to its creation. It was seeded by the class notes that we
developed for our introductory course on Computational Topology and Data
Analysis which we taught at the Ohio State University. During this teaching,
the class feedback from students gave us the hint that a book covering the
increasingly diversified repertoire of topological data analysis was necessary
at this point. We thank all those students who had to bear with the initial disar-
ray that was part of freshly gathering coherent material on a new subject. This
book would not have been possible without our own involvement with TDA,
which was mostly supported by grants from the National Science Foundation
(NSF). Many of our PhD students worked through these projects, which helped
us consolidate our focus on TDA. In particular, Tao Hou, Ryan Slechta, Cheng
Xin, and Soham Mukherjee gave their comments on drafts of some of the chap-
ters. We thank all of them. We thank everyone from the TGDA@OSU group
for creating one of the best environments for carrying out research in applied
and computational topology. Our special thanks go to Facundo Mémoli, who
has been a great colleague (who has collaborated with us on several topics) as
well as a wonderful friend at OSU. We also acknowledge the support of the
Department of CSE at the Ohio State University where a large amount of the
contents of this book were planned and written. The finishing came to fruition
after we moved to our current institutions.

Finally, it is our pleasure to acknowledge the support of our families who
kept us motivated and engaged throughout the marathon of writing this book,
especially during the last stretch overlapping the 2020–2021 Coronavirus
pandemic. Tamal recalls his daughter Soumi and son Sounak asking him con-
tinually about the progress of the book. His wife Kajari extended all the help
necessary to make space for extra time needed for the book. Despite suffer-
ing from the reduced attention to family matters, all of them offered their
unwavering support and understanding graciously. Tamal dedicates this book
to his family and his late parents Gopal Dey and Hasi Dey without whose
encouragement and love he would not have been in a position to take up this
project. Yusu thanks her husband Mikhail Belkin for his never-ending support
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xiv Preface

and encouragement throughout writing this book and beyond. Their two chil-
dren Alexander and Julia contributed in their typical ways by making every
day delightful and unpredictable for her. Without their support and love, she
would not have been able to finish this book. Finally, Yusu dedicates this book
to her parents Qingfen Wang and Jinlong Huang, who always gave her space
to grow and encouraged her to do her best in life, as well as to her great aunt
Zhige Zhao and great uncle Humin Wang, who kindly took her into their care
when she was 13. She can never repay their kindness.
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Prelude

We make sense of the world around us primarily by understanding and study-
ing the “shape” of the objects that we encounter in real life or in a digital
environment. Geometry offers a common language that we usually use to
model and describe shapes. For example, the familiar descriptors such as dis-
tances, coordinates, angles, and so on from this language assist us to provide
detailed information about a shape of interest. Not surprisingly, people have
used geometry for thousands of years to describe objects in their surroundings.

However, there are many situations where detailed geometric information
is not needed and may even obscure the really useful structure that is not
so explicit. A notable example is the Seven Bridges of Königsberg problem,
where, in the city of Königsberg, the Pregel river separates the city into four
regions, connected by seven bridges, as shown in Figure 1 (map and descrip-
tion taken from the Wikipedia page for “Seven bridges of Königsberg”). The
question is to find a walk through the city that crosses each bridge exactly
once. The story goes that the mathematician Leonhard Euler observed that fac-
tors such as the precise shape of these regions and the exact path taken are not
important. What is important is the connectivity among the different regions of
the city as connected by the bridges. In particular, the problem can be modeled
abstractly using a graph with four nodes, representing the four regions in the
city of Königsberg, and seven edges representing the bridges connecting them.
The problem then reduces to what’s later become known as finding the Euler
tour (or Eulerian cycle) in this graph, which can be easily solved.

For another example, consider animation in computer graphics, where one
wants to develop software that can continuously deform one object into another
(in the sense that one can stretch and change the shape, but cannot break and
add to the shape). Can we continuously deform a frog into a prince this way?1

1 Yes, according to Disney movies.

xv
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xvi Prelude

Figure 1 “Map of Königsberg in Euler’s time showing the actual layout of the
seven bridges, highlighting the river Pregel and the bridges” (the drawing by
Bogdan Giuşcă is licensed under CC BY-SA 3.0).

Is it possible to continuously deform a tea cup into a bunny? It turns out the
latter is not possible.

In these examples, the core structure of interest behind the input object or
space is characterized by the way the space is connected, and the detailed geo-
metric information may not matter. In general, topology intuitively models and
studies properties that are invariant as long as the connectivity of space does
not change. As a result, topological language and concepts can provide power-
ful tools to characterize, identify, and process essential features of both spaces
and functions defined on them. However, to bring topological methods to the
realm of practical applications, we need not only new ideas to make topo-
logical concepts and the resulting structures more suitable for modern data
analysis tasks, but also algorithms to compute these structures efficiently. In the
past two decades, the field of applied and computational topology has devel-
oped rapidly, producing many fundamental results and algorithms that have
advanced both fronts. This progress has further fueled the significant growth
of topological data analysis (TDA), which has already found applications in
various domains such as computer graphics, visualization, materials science,
computational biology, neuroscience, and so on.

In Figure 2, we present some examples of the use of topological methodolo-
gies in applications. The topological structures involved will be described later
in the book.

An important development in applied and computational topology in the
past two decades centers around the concept of persistent homology, which
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Figure 2 Examples of the use of topological ideas in data analysis. (a) A
persistence-based clustering strategy. The persistence diagram of a density field
estimated from an input noisy point cloud (shown in the top row) is used to help
group points into clusters (bottom row). Reprinted by permission from Springer
Nature: Springer Nature, Discrete and Computational Geometry, “Analysis of sca-
lar fields over point cloud data,” Chazal et al. [86], c© 2011. (b) Using persistence
diagram summaries to represent and cluster neuron cells based on their tree mor-
phology. Image taken from [206] licensed by Kanari et al. (2018) under CC BY
4.0 (https://creativecommons.org/licenses/by/4.0/). (c) Using the optimal persist-
ent 1-cycle corresponding to a bar (red) in the persistence barcode, defects in
diseased eyes are localized. Image taken from [127]. (d) Topological landscape
(left) of the 3D volumetric silicium dataset from [299]. A volume rendering of
the silicium dataset is on the right. However, note that it is hard to see all the
structures forming the lattice of the crystal, while the topological landscape view
shows clearly that most of them have high function values and are of similar sizes.
Image taken from [299], reprinted by permission from IEEE: Weber et al. (2007).
(e) Mapper structure behind the high-dimensional cell gene expression dataset
can show not only the cluster of different tumor or normal cells, but also their
connections. Image taken from [245], reprinted by permission from Nicolau et al.
(2011, figure 3). (f) Using a discrete Morse-based graph skeleton reconstruction
algorithm to help reconstruct road networks from satellite images even with few
labeled training data. Image taken from [138].
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xviii Prelude

generalizes the classic algebraic structure of homology groups to the mul-
tiscale setting aided by the concept of so-called filtration and persistence

modules (discussed in Chapters 2 and 3). This helps significantly to broaden
the applications of homological features to characterizing shapes/spaces of
interest.

Figure 2(a) gives an example where persistent homology of a density field
is used to develop a clustering strategy for the points [86]. In particular, at
the beginning, each point is in its own cluster. Then, these clusters are grown
using persistent homology, which identifies their importance and merges them
according to this importance. The final output captures key clusters which may
look like “blobs” or “curvy strips” – intuitively, they comprise dense regions
separated by sparse regions.

Figure 2(b) gives an example where the resulting topological summaries
from persistent homology have been used for clustering a collection of neu-
rons, each of which is represented by a rooted tree (as neuron cells have tree
morphology). We will see in Chapter 13 that persistent homology can serve as
a general way to vectorize the features of such complex input objects.

In Figure 2(c), diseased parts of retinal degeneracy in two eyes are local-
ized from image data. Algorithms for computing optimal cycles for bars in the
persistent barcode as described in Chapter 5 are used for this purpose.

In Figure 2(d), we present an example where the topological object of a con-
tour tree (the special loop-free case of the so-called Reeb graph as discussed
in Chapter 7) has been used to give a low-dimensional terrain metaphor of a
potentially high-dimensional scalar field. To illustrate further, suppose that we
are given a scalar field f : X → R where X is a space of potentially high
dimension. To visualize and explore X and f in R

2 and R
3, just mapping X to

R
2 can cause significant geometric distortion, which in turn leads to artifacts in

the visualization of f over the projection. Instead, we can create a 2D terrain
metaphor f ′ : R

2 → R for f which preserves the contour tree information as
proposed in [299]; intuitively, this preserves the valleys/mountain peaks and
how they merge and split. In this example, the original scalar field is in R

3.
However, in general, the idea is applicable to higher-dimensional scalar fields
(e.g., the protein energy landscape considered in [184]).

In Figure 2(e), we give an example of an alternative approach of explor-
ing a high-dimensional space X or functions defined on it via the mapper
methodology (introduced in Chapter 9). In particular, the mapper methodology
constructs a representation of the essential structure behind X via a pullback
of a covering of Z through a map f : X → Z . This intuitively captures the
continuous structure of X at coarser level via the discretization of Z . See Fig-
ure 2(e), where the one-dimensional skeleton of the mapper structure behind
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Prelude xix

a breast cancer microarray gene expression dataset is shown [245]. This con-
tinuous space representation not only shows “clusters” of different groups of
tumors and of normal cells, but also how they connect in the space of cells,
which are typically missing in standard cluster analysis.

Finally, Figure 2(f) shows an example of combining topological structures
from the discrete Morse theory (Chapter 10) with convolutional neural net-
works to infer road networks from satellite images [138]. In particular, the
so-called 1-unstable manifolds from discrete Morse theory can be used to
extract hidden graph skeletons from noisy data.

We conclude this prelude by summarizing the aim of this book: introduce
recent progress in applied and computational topology for data analysis with
an emphasis on the algorithmic aspect.
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