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Basics

Topology, mainly algebraic topology, is the fundamental mathematical subject

on which topological data analysis is based. In this chapter, we introduce some

of the very basics of this subject that are used in this book. First, in Section 1.1,

we give the definition of a topological space and other notions such as open

and closed sets, covers, and subspace topology that are derived from it. These

notions are quite abstract in the sense that they do not require any geometry.

However, the intuition of topology becomes more concrete to nonmathemati-

cians when we bring geometry into the mix. Section 1.2 is devoted to make

the connection between topology and geometry through what is called metric

spaces.

Maps such as homeomorphism and homotopy equivalence play a signifi-

cant role to relate topological spaces. They are introduced in Section 1.3. At

the heart of these definitions sits the important notion of continuous functions

which generalizes the concept mainly known for Euclidean domains to topo-

logical spaces. Certain categories of topological spaces become important for

their wide presence in applications. Manifolds are one such category which

we introduce in Section 1.4. Functions on them satisfying certain conditions

are presented in Section 1.5. They are well known as Morse functions. The

critical points of such functions relate to the topology of the manifold they are

defined on. We introduce these concepts in the smooth setting in this chap-

ter, and later adapt them for the piecewise-linear domains that are amenable to

finite computations.

1.1 Topological Space

The basic object in a topological space is a ground set whose elements are

called points. A topology on these points specifies how they are connected

by listing what points constitute a neighborhood – the so-called open set.
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2 1 Basics

The expression “rubber-sheet topology” commonly associated with the term

“topology” exemplifies this idea of connectivity of neighborhoods. If we bend

and stretch a sheet of rubber, it changes shape but always preserves the

neighborhoods in terms of the points and how they are connected.

We first introduce basic notions from point set topology. These notions are

prerequisites for more sophisticated topological ideas – manifolds, homeomor-

phism, isotopy, and other maps – used later to study algorithms for topological

data analysis. Homeomorphisms, for example, offer a rigorous way to state

that an operation preserves the topology of a domain, and isotopy offers a rig-

orous way to state that the domain can be deformed into a shape without ever

colliding with itself.

Perhaps it is more intuitive to understand the concept of topology in the pres-

ence of a metric because then we can use the metric balls such as Euclidean

balls in a Euclidean space to define neighborhoods – the open sets. Topolog-

ical spaces provide a way to abstract out this idea without a metric or point

coordinates, so they are more general than metric spaces. In place of a metric,

we encode the connectivity of a point set by supplying a list of all of the open

sets. This list is called a system of subsets of the point set. The point set and its

system together describe a topological space.

Definition 1.1. (Topological space) A topological space is a point set T

endowed with a system of subsets T , which is a set of subsets of T that satisfies

the following conditions:

● ∅,T ∈ T .

● For every U ⊆ T , the union of the subsets in U is in T .

● For every finite U ⊆ T , the common intersection of the subsets in U is in T .

The system T is called a topology on T. The sets in T are called the open

sets in T. A neighborhood of a point p ∈ T is an open set containing p.

First, we give examples of topological spaces to illustrate the definition

above. These examples have the set T finite.

Example 1.1. Let T= {0, 1, 3, 5, 7}. Then, T = {∅, {0}, {1}, {5}, {1, 5}, {0, 1},

{0, 1, 5}, {0, 1, 3, 5, 7}} is a topology because ∅ and T are in T as required by

the first axiom, the union of any sets in T is in T as required by the second

axiom, and the intersection of any two sets is also in T as required by the

third axiom. However, T = {∅, {0}, {1}, {1, 5}, {0, 1, 5}, {0, 1, 3, 5, 7}} is not

a topology because the set {0, 1} = {0} ∪ {1} is missing.
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1.1 Topological Space 3

(a) (b) (c)

Figure 1.1 Example 1.3: (a) a graph as a topological space, stars of the vertices

and edges as open sets; (b) a closed cover with three elements; and (c) an open

cover with four elements.

Example 1.2. Let T = {u, v, w}. The power set 2T = {∅, {u}, {v}, {w}, {u, v},

{u, w}, {v,w}, {u, v, w}} is a topology. For any ground set T, the power set is

always a topology on it which is called the discrete topology.

One may take a subset of the power set as a ground set and define a topology,

as the next example shows. We will recognize later that the ground set here

corresponds to simplices in a simplicial complex and the “stars” of simplices

generate all open sets of a topology.

Example 1.3. Let T = {u, v, w, z, (u, z), (v, z), (w, z)}; this can be viewed

as a graph with four vertices and three edges as shown in Figure 1.1. Let

● T1 = {{(u, z)}, {(v, z)}, {(w, z)}} and

● T2 = {{(u, z), u}, {(v, z), v}, {(w, z), w}, {(u, z), (v, z), (w, z), z}}.

Then, T = 2T1∪T2 is a topology because it satisfies all three axioms. All open

sets of T are generated by the union of elements in B = T1 ∪T2 and there is no

smaller set with this property. Such a set B is called a basis of T . We will see

later in the next chapter (Section 2.1) that these are open stars of all vertices

and edges.

We now present some more definitions that will be useful later.

Definition 1.2. (Closure; Closed sets) A set Q is closed if its complement

T \ Q is open. The closure Cl Q of a set Q ⊆ T is the smallest closed set

containing Q.

In Example 1.1, the set {3, 5, 7} is closed because its complement {0, 1} in

T is open. The closure of the open set {0} is {0, 3, 7} because it is the smallest

closed set (complement of open set {1, 5}) containing 0. In Example 1.2, all

sets are both open and closed. In Example 1.3, the set {u, z, (u, z)} is closed,

but the set {z, (u, z)} is neither open nor closed. Interestingly, observe that
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4 1 Basics

{z} is closed. The closure of the open set {u, (u, z)} is {u, z, (u, z)}. In all

examples, the sets ∅ and T are both open and closed.

Definition 1.3. Given a topological space (T, T ), the interior Int A of a sub-

set A ⊆ T is the union of all open subsets of A. The boundary of A is Bd

A = Cl A \ Int A.

The interior of the set {3, 5, 7} in Example 1.1 is {5} and its boundary is

{3, 7}.

Definition 1.4. (Subspace topology) For every point set U ⊆ T, the topol-

ogy T induces a subspace topology on U, namely the system of open subsets

U = {P ∩ U : P ∈ T }. The point set U endowed with the system U is said to

be a topological subspace of T.

In Example 1.1, consider the subset U = {1, 5, 7}. It has the subspace

topology

U = {∅, {1}, {5}, {1, 5}, {1, 5, 7}}.

In Example 1.3, the subset U = {u, (u, z), (v, z)} has the subspace topology

{∅, {u, (u, z)}, {(u, z)}, {(v, z)}, {(u, z), (v, z)}, {u, (u, z), (v, z)}}.

Definition 1.5. (Connected) A topological space (T, T ) is disconnected if

there are two disjoint non-empty open sets U, V ∈ T so that T = U ∪ V .

A topological space is connected if it is not disconnected.

The topological space in Example 1.1 is connected. However, the topolog-

ical subspace (Definition 1.4) induced by the subset {0, 1, 5} is disconnected

because it can be obtained as the union of two disjoint open sets {0, 1} and

{5}. The topological space in Example 1.3 is also connected, but the subspace

induced by the subset {(u, z), (v, z), (w, z)} is disconnected.

Definition 1.6. (Cover; Compact) An open (closed) cover of a topological

space (T, T ) is a collection C of open (closed) sets so that T =
⋃

c∈C c. The

topological space (T, T ) is called compact if every open cover C of it has a

finite subcover, that is, there exists C ′ ⊆ C such that T =
⋃

c∈C ′ c and C ′ is

finite.

In Figure 1.1(b), the cover consisting of {{u, z, (u, z)}, {v, z, (v, z)}, {w, z,

(w, z)}} is a closed cover whereas the cover consisting of {{u, (u, z)}, {v, (v, z)},
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1.2 Metric Space Topology 5

{w, (w, z)}, {z, (u, z), (v, z), (w.z)}} in Figure 1.1(c) is an open cover. Any

topological space with finite point set T is compact because all of its covers

are finite. Thus, all topological spaces in the discussed examples are compact.

We will see examples of noncompact topological spaces where the ground set

is infinite.

In the above examples, the ground set T is finite. It can be infinite in general

and a topology may have uncountably infinitely many open sets containing

uncountably infinitely many points.

Next, we introduce the concept of quotient topology. Given a space (T, T )

and an equivalence relation ∼ on elements in T, one can define a topology

induced by the original topology T on the quotient set T/∼ whose elements

are equivalence classes [x] for every point x ∈ T.

Definition 1.7. (Quotient topology) Given a topological space (T, T ) and an

equivalence relation ∼ defined on the set T, a quotient space (S, S) induced by

∼ is defined by the set S = T/∼ and the quotient topology S where

S :=
{

U ⊆ S | {x : [x] ∈ U } ∈ T
}

.

We will see the use of quotient topology in Chapter 7 when we study Reeb

graphs.

Infinite topological spaces may seem baffling from a computational point

of view, because they may have uncountably infinitely many open sets con-

taining uncountably infinitely many points. The easiest way to define such a

topological space is to inherit the open sets from a metric space. A topology

on a metric space excludes information that is not topologically essential. For

instance, the act of stretching a rubber sheet changes the distances between

points and thereby changes the metric, but it does not change the open sets

or the topology of the rubber sheet. In the next section, we construct such

a topology on a metric space and examine it from the concept of limit

points.

1.2 Metric Space Topology

Metric spaces are a special type of topological space commonly encountered in

practice. Such a space admits a metric that specifies the scalar distance between

every pair of points satisfying certain axioms.

Definition 1.8. (Metric space) A metric space is a pair (T, d) where T is

a set and d is a distance function d : T × T → R satisfying the following

properties:

www.cambridge.org/9781009098168
www.cambridge.org


Cambridge University Press
978-1-009-09816-8 — Computational Topology for Data Analysis
Tamal Krishna Dey , Yusu Wang 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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● d(p, q) = 0 if and only if p = q for all p ∈ T;

● d(p, q) = d(q, p) for all p, q ∈ T;

● d(p, q) ≤ d(p, r) + d(r, q) for all p, q, r ∈ T.

It can be shown that the three axioms above imply that d(p, q) ≥ 0 for every

pair p, q ∈ T. In a metric space T, an open metric ball with center c and radius

r is defined to be the point set Bo(c, r) = {p ∈ T : d(p, c) < r}. Metric balls

define a topology on a metric space.

Definition 1.9. (Metric space topology) Given a metric space T, all metric

balls {Bo(c, r) | c ∈ T and 0 < r ≤ ∞} and their union constituting the open

sets define a topology on T.

All definitions for general topological spaces apply to metric spaces with

the above defined topology. However, we give alternative definitions using the

concept of limit points which may be more intuitive.

As we have mentioned already, the heart of topology is the question of what

it means for a set of points to be connected. After all, two distinct points cannot

be adjacent to each other; they can only be connected to one another by passing

through uncountably many intermediate points. The idea of limit points helps

express this concept more concretely, specifically in the case of metric spaces.

We use the notation d(·, ·) to express minimum distances between point sets

P, Q ⊆ T:

d(p, Q) = inf{d(p, q) : q ∈ Q},

d(P, Q) = inf{d(p, q) : p ∈ P, q ∈ Q}.

Definition 1.10. (Limit point) Let Q ⊆ T be a point set. A point p ∈ T is a

limit point of Q, also known as an accumulation point of Q, if for every real

number ǫ > 0, however tiny, Q contains a point q �= p such that d(p, q) < ǫ.

In other words, there is an infinite sequence of points in Q that gets succes-

sively closer and closer to p – without actually being p – and gets arbitrarily

close. Stated succinctly, d(p, Q \ {p}) = 0. Observe that it does not matter

whether p ∈ Q or not.

To see the parallel between the definitions given in this subsection and the

definitions given before, it is instructive to define limit points also for general

topological spaces. In particular, a point p ∈ T is a limit point of a set Q ⊆ T

if every open set containing p intersects Q.

Definition 1.11. (Connected) A point set Q ⊆ T is called disconnected if Q

can be partitioned into two disjoint non-empty sets U and V so that there is no
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1.2 Metric Space Topology 7

(a) (b)

Figure 1.2 (a) The point set is disconnected; it can be partitioned into two con-

nected subsets shaded differently. (b) The point set is connected; the black point

at the center is a limit point of the points shaded lightly.

(a) (b)

Figure 1.3 Closed, open, and relatively open point sets in the plane. Dashed edges

and open circles indicate points missing from the point set.

point in U that is a limit point of V , and no point in V that is a limit point of U .

(See Figure 1.2[a] for an example.) If no such partition exists, Q is connected,

like the point set in Figure 1.2(b).

We can also distinguish between closed and open point sets using the con-

cept of limit points. Informally, a triangle in the plane is closed if it contains

all the points on its edges, and open if it excludes all the points on its edges, as

illustrated in Figure 1.3. The idea can be formally extended to any point set.

Definition 1.12. (Closure; Closed; Open) The closure of a point set Q ⊆ T,

denoted Cl Q, is the set containing every point in Q and every limit point of Q.

A point set Q is closed if Q = Cl Q, that is, Q contains all its limit points. The

complement of a point set Q is T \ Q. A point set Q is open if its complement

is closed, that is, T \ Q = Cl (T \ Q).

For example, consider the open interval (0, 1) ⊂ R, which contains every

r ∈ R so that 0 < r < 1. Let [0, 1] denote a closed interval (0, 1) ∪ {0} ∪ {1}.

The numbers 0 and 1 are both limit points of the open interval, so Cl (0, 1) =

[0, 1] = Cl [0, 1]. Therefore, [0, 1] is closed and (0, 1) is not. The numbers 0

and 1 are also limit points of the complement of the closed interval, R \ [0, 1],

so (0, 1) is open, but [0, 1] is not.
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8 1 Basics

The definition of open set of course depends on the space being consid-

ered. A triangle τ that is missing the points on its edges is open in the

two-dimensional affine Euclidean space supporting τ . However, it is not open

in the Euclidean space R3. Indeed, every point in τ is a limit point of R3 \ τ ,

because we can find sequences of points that approach τ from the side. In rec-

ognition of this caveat, a simplex σ ⊂ Rd is said to be relatively open if it

is open relative to its affine hull. Figure 1.3 illustrates this fact where, in this

example, the metric space is R2.

We can define the interior and boundary of a set using the notion of limit

points also. Informally, the boundary of a point set Q is the set of points where

Q meets its complement T \ Q. The interior of Q contains all the other points

of Q.

Definition 1.13. (Boundary; Interior) The boundary of a point set Q in a met-

ric space T, denoted Bd Q, is the intersection of the closures of Q and its

complement; that is, Bd Q = Cl Q ∩ Cl (T \ Q). The interior of Q, denoted

Int Q, is Q \ Bd Q = Q \ Cl (T \ Q).

For example, Bd [0, 1] = {0, 1} = Bd (0, 1) and Int [0, 1] = (0, 1) =

Int (0, 1). The boundary of a triangle (closed or open) in the Euclidean plane

is the union of the triangle’s three edges, and its interior is an open triangle,

illustrated in Figure 1.3. The terms boundary and interior have similar subtlety

as open sets: the boundary of a triangle embedded in R3 is the whole triangle,

and its interior is the empty set. However, relative to its affine hull, its interior

and boundary are defined exactly as in the case of triangles embedded in the

Euclidean plane. Interested readers can draw the analogy between this obser-

vation and the definition of interior and boundary of a manifold that appear

later in Definition 1.23.

We have seen a definition of the compactness of a point set in a topological

space (Definition 1.6). We define it differently here for a metric space. It can

be shown that the two definitions are equivalent.

Definition 1.14. (Bounded; Compact) The diameter of a point set Q is

supp,q∈Q d(p, q). The set Q is bounded if its diameter is finite, and is

unbounded otherwise. A point set Q in a metric space is compact if it is closed

and bounded.

In the Euclidean space Rd we can use the standard Euclidean distance as

the choice of metric. On the surface of a coffee mug, we could choose the

Euclidean distance too; alternatively, we could choose the geodesic distance,

namely the length of the shortest path from p to q on the mug’s surface.
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Example 1.4. (Euclidean ball) In Rd , the Euclidean d-ball with center c and

radius r , denoted B(c, r), is the point set B(c, r) = {p ∈ Rd : d(p, c) ≤ r}.

A 1-ball is an edge, and a 2-ball is called a disk. A unit ball is a ball with

radius 1. The boundary of the d-ball is called the Euclidean (d − 1)-sphere

and denoted S(c, r) = {p ∈ Rd : d(p, c) = r}. The name expresses the fact

that we consider it a (d − 1)-dimensional point set – to be precise, a (d − 1)-

dimensional manifold – even though it is embedded in d-dimensional space.

For example, a circle is a 1-sphere, and a layman’s “sphere” in R3 is a 2-

sphere. If we remove the boundary from a ball, we have the open Euclidean

d-ball Bo(c, r) = {p ∈ Rd : d(p, c) < r}.

The topological spaces that are subspaces of a metric space such as Rd

inherit their topology as a subspace topology. Examples of topological sub-

spaces are the Euclidean d-ball Bd , Euclidean d-sphere Sd , open Euclidean

d-ball Bd
o , and Euclidean half-ball Hd , where

B
d = {x ∈ R

d : ‖x‖ ≤ 1},

S
d = {x ∈ R

d+1 : ‖x‖ = 1},

B
d
o = {x ∈ R

d : ‖x‖ < 1},

H
d = {x ∈ R

d : ‖x‖ < 1 and xd ≥ 0}.

1.3 Maps, Homeomorphisms, and Homotopies

The equivalence of two topological spaces is determined by how the points

that comprise them are connected. For example, the surface of a cube can be

deformed into a sphere without cutting or gluing it because they are connected

the same way. They have the same topology. This notion of topological equiv-

alence can be formalized via functions that send the points of one space to

points of the other while preserving the connectivity.

This preservation of connectivity is achieved by preserving the open sets.

A function from one space to another that preserves the open sets is called

a continuous function or a map. Continuity is a vehicle to define topological

equivalence, because a continuous function can send many points to a single

point in the target space, or send no points to a given point in the target space.

If the former does not happen, that is, when the function is injective, we call

it an embedding of the domain into the target space. True equivalence is given

by a homeomorphism, a bijective function from one space to another which

has continuity as well as a continuous inverse. This ensures that open sets are

preserved in both directions.
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Figure 1.4 Each point set in this figure is homeomorphic to the point set above or

below it, but not to any of the others. Open circles indicate points missing from

the point set, as do the dashed edges in the point sets second from the right.

Definition 1.15. (Continuous function; Map) A function f : T → U from the

topological space T to another topological space U is continuous if for every

open set Q ⊆ U, f −1(Q) is open. Continuous functions are also called maps.

Definition 1.16. (Embedding) A map g : T → U is an embedding of T into U

if g is injective.

A topological space can be embedded into a Euclidean space by assigning

coordinates to its points so that the assignment is continuous and injective. For

example, drawing a triangle on paper is an embedding of S1 into R2. There are

topological spaces that cannot be embedded into a Euclidean space, or even

into a metric space – these spaces cannot be represented by any metric.

Next we define a homeomorphism that connects two spaces that have

essentially the same topology.

Definition 1.17. (Homeomorphism) Let T and U be topological spaces. A

homeomorphism is a bijective map h : T → U whose inverse is continuous

too.

Two topological spaces are homeomorphic if there exists a homeomorphism

between them.

Homeomorphism induces an equivalence relation among topological spaces,

which is why two homeomorphic topological spaces are called topologically

equivalent. Figure 1.4 shows pairs of homeomorphic topological spaces. A less

obvious example is that the open d-ball Bd
o is homeomorphic to the Euclidean

space Rd , given by the homeomorphism h(x) = x/(1 − ||x ||). The same map

also exhibits that the half-ball Hd is homeomorphic to the Euclidean half-space

{x ∈ Rd : xd ≥ 0}.

For maps between compact spaces, there is a weaker condition to be verified

for homeomorphisms because of the following property.
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