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1 Numbers, Quadratics and
Inequalities

We begin our journey by taking a closer look at some familiar notions, such as

quadratic equations and inequalities. And, rather than using mechanical com-

putations and algorithms, we focus on more fundamental questions. Where

does the quadratic formula come from and how can we prove it? What are the

rules that can be used with inequalities, and how can we justify them? These

questions will lead us to look at a few proofs and mathematical arguments. We

highlight some of the main features of a mathematical proof, and discuss the

process of constructing mathematical proofs.

We also review informally the types of numbers often used in mathematics,

and introduce relevant terminology.

1.1 The Quadratic Formula

The general formula for solving an equation of the form ax2 + bx + c = 0,

x =
2b ±

:
b2 2 4ac

2a
,

was most likely presented to you in high school, and you learned how to use

it for solving quadratic equations in various settings. However, if you have not

seen a proof, or some sort of explanation, it would be hard to see where this

formula is coming from, and why it works. In fact, the proof of this formula

is quite straightforward, and requires only certain algebraic manipulations. We

therefore start by properly stating a theorem on quadratic equations, and then

present a proof using the method the completing the square.

Theorem 1.1.1 (The Quadratic Formula) Let a, b, c be real numbers, with

a "= 0. The equation ax2 + bx + c = 0 has

1. no real solutions if b2 2 4ac < 0,

2. a unique solution if b2 2 4ac = 0, given by x = 2 b
2a

,

3. two distinct solutions if b2 2 4ac > 0, given by

x =
2b +

:
b2 2 4ac

2a
and x =

2b 2
:

b2 2 4ac

2a
.
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4 Numbers, Quadratics and Inequalities

Remarks.

" The quantity b2 2 4ac is called the discriminant of the quadratic equa-

tion, and is often denoted by , the capital Greek letter Delta. The theorem

implies that the number of real solutions depends on whether < 0, = 0

or  > 0.

" We used the terms real numbers and real solutions in the statement of the

theorem. For now, let us think of real numbers as representing points on

an infinite number line. A real number may be a whole number, positive or

negative, a fraction, etc. We will discuss later in more detail the notion of a

real number and the real number system.

Proof First, let us multiply both sides of the equation by 4a. As a "= 0, this

leads to the following equivalent equation:

4a2x2 + 4abx + 4ac = 0.

Next, we add and subtract the term b2 to the left-hand side:

4a2x2 + 4abx + b2 2 b2 + 4ac = 0.

We now observe that the expression 4a2x2 + 4abx + b2 or, equivalently,

(2ax)2 + 2 · 2ax · b + b2, is a perfect square. Replacing these three terms

by (2ax + b)2 and moving the remaining terms to the right-hand side leads to

(2ax + b)2 = b2 2 4ac.

The resulting equation is simpler than the original one, as the unknown x

appears only once. It will be easier now to solve for x and obtain the quadratic

formula. Nevertheless, we must be careful. Solving for x will involve using

square roots, which cannot be applied to negative numbers. We therefore

consider three possible cases.

1. If b2 2 4ac < 0, then the equation has no real solutions, as (2ax + b)2 g 0

for all real numbers x.

2. If b2 2 4ac = 0, then the equation becomes (2ax + b)2 = 0. This implies

that 2ax + b = 0, from which it follows that x = 2 b
2a

. Consequently, the

equation has a unique solution in this case.

3. If b2 2 4ac > 0, then the equation has two real solutions, given by

2ax + b = ±
�

b2 2 4ac.

We can rearrange this equality to obtain the familiar quadratic formula

x =
2b ±

:
b2 2 4ac

2a
,

as needed.
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5 1.1 The Quadratic Formula

Exercise 1.1.2

Suppose that a, b and c are real numbers with a > 0 and c < 0. How many

solutions does the quadratic equation ax2 + bx + c = 0 have?

This was our first proof. Take a close look at it! What features can you

identify in that proof? Here are a few important remarks.

Remarks.

" The proof included quite a few words and sentences, in natural language,

and not just mathematical symbols such as equations, numbers and for-

mulas. This will happen with most mathematical proofs. A mathematical

argument should be made out of complete sentences, which may contain

words, symbols, or a combination of both. The words are meant to help the

reader follow the logical flow of the argument, explain the main steps, and

connect the various parts of the proof. Words such as if-then, and, and or

often appear in mathematical arguments and should be used properly. In

Chapter 3 we discuss in detail the meaning of these words in mathematics,

and how to use them in mathematical proofs.

" At the end of the proof, we placed the symbol �. This is a common way

to denote the end of a mathematical proof or, more generally, the end of

an argument. In other books you might see the symbol or the acronym

Q.E.D. used instead. The latter comes from the Latin phrase Quod Erat

Demonstrandum, meaning “that which was to be shown.” In this book we

will use our square �.

" A mathematical argument is normally based on facts that have been pre-

viously validated, or agreed upon. For example, in the proof of Theorem

1.1.1, we used the identity (x + y)2 = x2 + 2xy + y2, which is valid for

every two real numbers x and y. Should we have also proved this formula?

Well, we could, but we assumed that it was well established prior to prov-

ing the theorem, and so there was no need to re-explain or prove it again.

This sort of judgment needs to be done each time a mathematical argument

is presented to an audience, and you will need to ask yourself which facts

should be well known to the reader? What other theorems or claims may I

refer to in my proof? What are the main steps, or ideas, in the argument?

What is the main tool (or tools) used in my proof? Should I mention them

explicitly? With time and practice, you will develop your own style of writ-

ing mathematical proofs. The feedback you will get from your teachers and

classmates will help you improve your writing and polish your arguments.

There are several reasons why proofs are important. First, a proof validates

the truth of a general statement. Once a theorem is proved, it remains true

forever (unless an error is found). For instance, Theorem 1.1.1 implies that

a quadratic equation can never have three distinct solutions, no matter how
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6 Numbers, Quadratics and Inequalities

hard you try to find one, or how much time you spend searching. This is the

strength of a proof. We can say now, without a doubt, that every given quadratic

equation must have zero, one or two real solutions, and there are no other

options or exceptions.

Second, a proof often gives us an insight as to why the theorem is valid,

and may suggest strategies for proving other related statements. For instance,

can we prove a similar theorem on cubic equations? Quite often, discovering

a proof for a given statement serves as a step in proving other related or more

general results.

1.2 Working with Inequalities – Setting the Stage

In your high school years, you must have spent a substantial amount of

time on equations. You had to rearrange, simplify, and solve equations regu-

larly. However, working with inequalities can be more challenging, and one

has to be much more careful with arguments and computations involving

inequalities.

Example 1.2.1 Consider the equation 1
x

= x. Solving it is quite straightfor-

ward. We multiply both sides by x to get the equation x2 = 1, which has

solutions x = 1 and x = 21.

On the other hand, how would one solve the inequality 1
x
> x? Here, we

cannot multiply both sides by x as we did previously, since the inequality sign

would need to be reversed if x < 0. Instead, we consider two cases.

" If x > 0, then multiplying by x gives 1 > x2, and the positive xs satisfying

this inequality are those between 0 and 1. Namely, we conclude that 0 <

x < 1.

" If x < 0, we get 1 < x2 (the inequality sign is reversed), and the negative xs

satisfying this condition are those which are less than 21. That is, x < 21.

In summary, the set of real xs for which 1
x
> x are the numbers between 0

and 1, and those that are smaller than 21. We can write:

1

x
> x if and only if x < 21 or 0 < x < 1.

In mathematics, the words “if and only if ” indicate a two-sided implication.

If x solves the inequality, then it must satisfy the condition “x < 21 or 0 <

x < 1,” and if this condition is satisfied, then x solves the inequality.

This example shows some of the complications that may arise while work-

ing with inequalities, and how important it is to be able to manipulate them

properly.
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7 1.2 Working with Inequalities – Setting the Stage

We begin by listing a few basic properties involving inequalities, which we

temporarily refer to as Basic Facts.

Basic Facts. Suppose that x, y, z are real numbers.

1. Exactly one of the following must occur: x < y, y < x or x = y.

2. If x < y and y < z then x < z.

3. If x < y then x + z < y + z.

4. If x < y and z > 0 then xz < yz.

5. If z > 0, there is exactly one positive number
:

z, whose square is z.

Note that the condition a < b has the same meaning as b > a. Moreover, we

allow ourselves to use symbols such as f and g to mean “less than or equal

to,” and “greater than or equal to,” respectively.

For now, we accept the Basic Facts without proof. As we will discuss later,

certain theories in mathematics are built on some foundational assumptions,

often called axioms, which we accept without proof.

There are more basic properties involving inequalities. We have decided

not to include them as they can be derived as consequences from the above

basic facts.

Proposition 1.2.2 For all real numbers x, y, w, z, the following hold true.

1. If x < y and z < 0 then xz > yz.

2. If x < y and z < w then x + z < y + w.

3. If 0 < x < y and 0 < z < w then xz < yw.

Proof 1. Using Basic Fact 3, we add 2z to the inequality z < 0, to get

z + (2z) < 0 + (2z) which simplifies to 0 < 2z.

Now, we use Basic Fact 4 and multiply both sides of x < y by 2z, which

gives us (2z)x < (2z)y or, equivalently, 2zx < 2zy.

Finally, we add zx and zy to both sides (using Basic Fact 3 again), and get

zy < zx, or xz > yz, as needed.

2. We first use Basic Fact 3 twice. Adding z to both sides of x < y gives

x + z < y + z. Adding y to both sides of z < w gives y + z < y + w.

From Basic Fact 2 it follows that x + z < y + z and y + z < y + w imply

x + z < y + w, as needed.

3. See the exercise below.

Note again how our proofs contained words, and that complete sentences

were used. If we remove all words from, say, the proof of Part 1 above, we

would get something like

z < 0 z + (2z) < 0 + (2z) 0 < 2z x < y 2 zx < 2zy xz > yz,
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8 Numbers, Quadratics and Inequalities

which cannot be considered a proof (even though it contains the key steps).

Without words and complete sentences, it would be very hard for the reader

to follow the argument, and the logic that was used. The reader may conclude

that the argument is incomplete, unclear, or even flawed.

If we replace all the inequality signs < and > in Proposition 1.2.2 by f and

g, respectively, we obtain another valid proposition, that can be proved using

similar arguments.

Exercise 1.2.3

Prove Part 3 of Proposition 1.2.2.

Exercise 1.2.4

Use the Basic Facts and Proposition 1.2.2 to prove the following.

" 0 < 1. (Hint: Show that 1 < 0 is impossible.)

" For every non-zero real number x, we have x2 > 0.

Our next proposition involves squaring and square-rooting inequalities.

Proposition 1.2.5 Let a and b be two real numbers.

1. If 0 < a < b then a2 < b2 and
:

a <
:

b.

2. Similarly, if 0 f a f b, then a2 f b2 and
:

a f
:

b.

Exercise 1.2.6

Show that the assumption that a and b are positive is crucial. That is, show that

if a and b are two real numbers, and a < b, then a2 < b2 might be false.

Proof of Proposition 1.2.5 We prove Part 1 only. The proof of Part 2, which

is almost identical, is left to the reader.

Suppose that 0 < a < b. As a < b and a > 0, we can use Basic Fact 3 with

x = z = a and y = b to get a2 < ab. Similarly, as b > 0, we can use Basic

Fact 3 again to get ab < b2. Now, from a2 < ab and ab < b2 we get, from

Basic Fact 1, that a2 < b2.

To prove the second inequality, we rearrange the inequality a < b and use

the difference of squares formula x2 2 y2 = (x + y)(x 2 y):

a < b ó b 2 a > 0 ó (
:

b +
:

a)(
:

b 2
:

a) > 0.

Note that Basic Fact 5 has been used here implicitly. The symbol ó means

“implies that,” and will be discussed in detail in Chapter 3. Finally, we multiply

both sides, using Basic Fact 4 with z = 1:
b+

:
a
, to get

:
b 2

:
a > 0, or

:
a <

:
b, as needed.
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9 1.3 The Arithmetic-Geometric Mean and the Triangle Inequalities

1.3 The Arithmetic-Geometric Mean and the Triangle
Inequalities

In this section, we present two fundamental and important inequalities in

mathematics: the Arithmetic-Geometric Mean Inequality and the Triangle

Inequality. Both are central to many areas of mathematics and have numerous

applications in physics, statistics and other sciences. Moreover, the approach

we use to prove these inequalities is quite general, and can be used to prove

other useful statements.

The Arithmetic-Geometric Mean Inequality

We begin with the following definition.

Definition 1.3.1 The arithmetic mean of two real numbers x and y is
x+y

2 .

If x, y g 0, then their geometric mean is
:

x · y.

You may be already familiar with the arithmetic mean, often called the aver-

age of two numbers. The geometric mean is another type of average which

shows up frequently in various applications. Let us look at a few examples.

Example 1.3.2 The arithmetic mean of 2 and 8 is 2+8
2 = 5, and their geometric

mean is
:

2 · 8 = 4.

The arithmetic mean of 5 and 45 is 50
2 = 25 and their geometric mean is:

225 = 15.

Note how in both cases, the arithmetic mean is greater than the geometric

mean. As we will shortly see, this is not a coincidence.

The arithmetic mean of 210 and 7 is 21.5, and their geometric mean is

undefined.

Example 1.3.3 A bank offers a savings account that pays interest once a year

as follows. The rate for the first year is 10%, and for the second year it is 20%.

For instance, if the initial investment is $250, then after one year, this amount

grows to $250·1.1 = $275, and after two years to $275·1.2 = $330. In general,

if the initial investment is x, then after two years, it grows to x·1.1·1.2 = 1.32x.

What would be a sensible way to define an “average rate” for the first two-

year period?

Solution

We might want to look for a hypothetical fixed rate r that would lead to the

same final amount. Thus, we want r to satisfy the condition x ·r ·r = x ·1.1 ·1.2

(for every value of x). We get
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10 Numbers, Quadratics and Inequalities

C

BDA

x

h

y

Figure 1.1 A right triangle inscribed in a (half) circle.

r2 = 1.1 · 1.2 ó r =
:

1.1 · 1.2 =
:

1.32 j 1.1489.

We conclude that the average interest rate is about 14.89% (and not 15%). Note

that 1.1489 is the geometric mean of 1.1 and 1.2.

Example 1.3.4 In Figure 1.1, AB is a diameter of a circle, and CD is perpen-

dicular to AB. If x, y and h are the lengths of AD, BD and CD, respectively,

how can we express h in terms of x and y?

Solution

One way to proceed, is to observe that triangles ADC, CDB and ACB are all

right triangles (remember that inscribed angles in a circle, subtended by a

diameter, are right angles). Therefore, we can apply the Pythagorean Theorem

to get

AC2 = AD2 + DC2, CB2 = CD2 + DB2 and AB2 = AC2 + CB2.

We now use the first two equalities to replace AC2 and CB2 by AD2 +DC2 and

CD2 + DB2 in the third equality:

AB2 = (AD2 + DC2)+ (CD2 + DB2) = AD2 + 2CD2 + DB2.

Expressing all quantities in terms of x, y and h leads to

(x+y)2 = x2+2h2+y2 ó x2+2xy+y2 = x2+2h2+y2 ó h2 = xy,

which gives h = :
xy. In other words, h is the geometric mean of x and y.

Exercise 1.3.5

Use similar triangles instead of the Pythagorean Theorem, to provide an

alternative solution to Example 1.3.4.

We are now ready to present the Arithmetic-Geometric Mean Inequality.

Theorem 1.3.6 (The Arithmetic-Geometric Mean Inequality) For every two

real numbers x and y, we have x · y f
"

x+y
2

"2
, and equality holds if and only

if x = y.
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11 1.3 The Arithmetic-Geometric Mean and the Triangle Inequalities

If, in addition, x g 0 and y g 0, then
:

x · y f x+y
2 .

The last statement says that when x, y g 0, the geometric mean is less than

or equal to the arithmetic mean of x and y.

Let us first make sure that we fully understand the statement, and what needs

to be proved. Keeping in mind that “if and only if ” means a double-sided

implication, we see that there are three statements included in the first sentence.

1. For all real numbers x and y, x · y f
"

x+y
2

"2
.

2. If x = y, then x · y =
"

x+y
2

"2
.

3. If x · y =
"

x+y
2

"2
, then x = y.

The second sentence in Theorem 1.3.6 also needs to be proved, but this will

follow by applying square roots to both sides of x · y f
"

x+y
2

"2
.

Let us start by focusing on Part 1. How would one prove such an inequality

for all x and y? We cannot substitute numbers for x and y, as our argument

must be completely general. But, as a start, we can try to rewrite the given

inequality, with the hope of simplifying it to an inequality that would be easier

to prove. We call this kind of work “rough work,” since we are not writing

an actual proof yet, but only doing preliminary experimentation to try and

discover a proof.

Rough Work

x · y f
�

x + y

2

�2

ó x · y f
x2 + 2xy + y2

4
ó 4xy f x2 + 2xy + y2

ó 0 f x2 2 2xy + y2 ó 0 f (x 2 y)2.

Can this rough work be considered a proof? No. First, there are no words and

full sentences explaining the argument. More importantly, a proof cannot begin

with the statement that needs to be proved. Remember, we cannot assume the

validity of the inequality x · y f
"

x+y
2

"2
. Our task is to provide a proof that

validates the inequality. We may only use facts that are known to be true, such

as elementary high school algebra.

However, we did achieve something. Using algebraic manipulations, we

were able to obtain a simpler inequality, namely 0 f (x 2 y)2, which holds

true for all x and y, by Exercise 1.2.4. We might be able to use it as our starting

point, and work backwards in the rough work. If we manage to reverse all the

steps, we will end up with the desired inequality, and that would be our proof.

We are now ready to prove the theorem.
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12 Numbers, Quadratics and Inequalities

Proof of Theorem 1.3.6 1. For every two real numbers x and y, we have 0 f
(x 2 y)2, as a2 g 0 for every real number a. We expand and add 4xy to both

sides, and get

0 f (x2y)2 ó 0 f x222xy+y2 ó 4xy f x2+2xy+y2.

We divide by 4, and notice that the right-hand side is a perfect square:

xy f
x2 + 2xy + y2

4
ó xy f

�

x + y

2

�2

.

We conclude that the last inequality is valid for all real numbers x and y, as

needed.

2. To prove this part, we do not need rough work. We can simply replace y by

x and verify that we get an equality. Indeed, if x = y, then the left-hand side

becomes xy = x2, and the right hand side becomes
�

x + y

2

�2

=
�

2x

2

�2

= x2.

We have proved that when x = y we have an equality, as needed.

3. Finally, we assume that xy =
"

x+y
2

"2
, and prove that x = y. This can be

done by simplifying the former equality, with the hope that, at some point,

it will become clear that x and y must be equal to each other. The steps we

follow resemble the rough work:

x·y =
�

x + y

2

�2

ó x·y =
x2 + 2xy + y2

4
ó 4xy = x2+2xy+y2

ó 0 = x2 2 2xy + y2 ó 0 = (x 2 y)2.

The only number that squares to zero is 0, and so x 2 y = 0, from which we

conclude that x = y, as needed.

To prove the second sentence in the theorem, suppose that x, y g 0. We

already know that the inequality

xy f
�

x + y

2

�2

holds true. Using Proposition 1.2.5, we apply square roots to both sides, and

get
:

xy f
x + y

2
,

which concludes our proof.

Here is an example in which the Arithmetic-Geometric Mean Inequality is

used.
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