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Multilayer Network Science 1

1 Introduction
What is a complex system? It is a network of actors or units related by special
types of interactions that, together, form a whole. Whether involving two pro-
teins within a cell or two individuals within a social group, relationships and
interactions tie these units together in such a way that <the whole is larger than
the sum of its parts,= a concept initially introduced by the Greek philosopher
Aristotle and later exploited by Gestalt psychologists, at the end of the nine-
teenth century, to explain human perception beyond the traditional atomistic
view.

In fact, the <whole= exhibits features that each actor or unit, in isolation,
does not and could not. Therefore, it is usually difficult, if not impossible, to
understand a system from the analysis of its components alone, as in atomis-
tic or other reductionist theories [309]. The framework required to study such
relationships and interactions is known as network science.1

The foundations of network science can be found in the pioneering work
of Leonhard Euler in 1736, when the famous mathematician provided the first
mathematically grounded proof to definitively solve the problem of the Seven
Bridges of Königsberg. He mapped the empirical problem of traversing the city
of Königsberg 3 under the constraint that one should use each one of its seven
bridges only one time 3 onto the abstract problem of performing a special walk
through a graph. After Euler9s solution, graph theory quickly developed in the
successive two centuries, culminating in the groundbreaking contributions by
Paul ErdQs and Alfréd Rényi on random graphs and their statistical analysis at
the end of the 1950s.

For decades, social scientists and (systems) biologists have widely used
graph theory to map connections between individuals and biological units,
respectively, to gain novel insights about the properties of a system, the rel-
evance of a unit within the system, and the organization of units within the
system. In 1974, François Jacob, the winner of the 1965 Nobel Prize in Phys-
iology or Medicine, described biology as a science effectively dealing with
systems within systems [280], well before the age of genomics and large-scale
biology. He recognized that biological systems also can be mapped onto units of
systems at a larger scale: in fact, proteins interact with each other to make cells
function, cells interact with each other to construct tissues and organs, which
in turn interact with each other to build an organism. Finally, at the top of this
hierarchical web of interactions, organisms interact with each other to define
a population, like our society. In the same decade, similar ideas regarding the

1 We refer the reader to this interesting, nontechnical, and recent introduction to the basic concepts
characterizing complex systems [96].
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2 The Structure and Dynamics of Complex Networks

nontrivial interdependencies between scales were laid out by the 1977 Nobel
Laureate in Physics, Phillip Anderson, in the context of natural sciences [14].

Social scientists, as biologists, were among the first to face the existence
of multiple levels (or scales) as well as multiple layers of descriptions for the
units of a social system. In the early 1970s, Wayne W. Zachary observed the
interactions within a group of individuals belonging to a karate club over three
years [304] in order to understand the dynamics of conflicts, which allowed
him to predict the outcome of the group split that happened later. He annotated
interactions across eight distinct contexts, from <the association in and between
academic classes at the university= to <attendance at intercollegiate karate tour-
naments held at local universities.= However, at that time, the mathematical
framework required to study a network with multiple layers of complexity 3
such as the eight contexts 3 was not yet developed and Zachary opted for an
approximation: aggregating the multiple interactions across contexts into a sin-
gle representative number denoting the intensity of the relationship between a
pair of actors.

In this work, we seek to better understand the challenges faced by sys-
tems biologists and social scientists between the 1970s and the past decade,
while introducing the basic concepts required to define the framework of
multilayer network science with an interdisciplinary language that should be
familiar to biologists, social scientists, computer scientists, applied mathe-
maticians, and physicists. Therefore, it will become clear that, for instance,
Zachary9s approach was a possible model to study the karate club network, but
likely neither the most accurate nor the most predictive one. We will discuss
under which conditions a system admits a multilayer representation, provid-
ing examples such as the ones shown in Figures 1 and 2, where units are
individuals and geographic areas, respectively, and interactions represent coau-
thorship of scientific papers and transportation routes, respectively. Another
emblematic example, accounting for the temporal and socio-spatial interde-
pendence typical of many systems, concerns the organization of ecological
systems [225]. Finally, very recently, multilayer modeling in systems biol-
ogy and medicine has been used to integrate information about biological
processes, drug targets, genotype, and phenotype to the subset of the human
interactome targeted by SARS-CoV-2, the COVID-19 virus [288] (see Fig-
ure 3). This work is full of examples like these, and we hope to make clear
the broad spectrum of potential interdisciplinary applications of the multilayer
framework.

Our ultimate goal is to guide the reader through the potential applications of
multilayer modeling, which nowadays provides a well-established paradigm
for the analysis of systems characterized by multiple levels and layers of
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4 The Structure and Dynamics of Complex Networks

Figure 2 A multilayer transportation network where connections using a
particular means of transport are associated with intralayer links and

intermodal exchanges are represented by the interlayer links. Here, the
national public transportation network for Great Britain [125, 126] as

rendered by MuxViz [101]. Figure from [126].

Figure 3 Illustration of CovMulNet19, the multilayer network encoding
COVID-19 genotype-phenotype-drug interactions. A schematic map of intra-
and interlayer interdependencies between diseases, symptoms, drugs, gene
ontology terms, human proteins, and viral proteins of SARS-CoV-2, the

COVID-19 virus. Figure from [288].

description, including systems whose structure changes over time. The aim is to
provide the reader with the tools required to model and analyze systems in terms
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Multilayer Network Science 5

of coupled layers, as well as with the conditions under which this approach is
plausible.

It is worth remarking here that this work should be considered as an extended
introduction to the field but not the most complete one. For this reason, we point
the reader to the first reviews [36, 53, 103, 161, 295] and recent books [51, 83]
on this topic or more specifically on analysis and visualization of multilayer
networks [94], which, taken together with our work, will provide a more
comprehensive view of the field.

In Section 2, we will introduce the representation of multilayer networks
based on the tensorial formulation [97], providing the mathematical ground
for the analytical techniques for structure (Section 3) and dynamics (Sec-
tion 4), allowing the reader to find a reference for the analysis of versatility
(or multilayer centrality) and mesoscale organization (or community detec-
tion), as well as for percolation, synchronization, competition, and modeling
of intertwined phenomena. Toward the end (Section 5), we will discuss a few
selected advances in network science 3 namely the latent geometry of a com-
plex network based on network-driven processes and the statistical theory of
information dynamics leading to the formalism of network density matrices
3 and their recent generalization and application to multilayer networks. Finally
(Section 6), we will show how multilayer networks are ubiquitous and can be
used for modeling complex systems, from cells to societies.

2 Representation of Multilayer Systems
2.1 Tensorial Representation of a Complex Network

One convenient way to mathematically represent a complex network is by
means of its adjacency matrix [30, 31, 114, 173, 203]. However, to deal with
multilayer networks, it might be more convenient to introduce first the more
general concept of the tensor, a multilinear function that maps objects defined
in a vector space into other objects of the same type, regardless of the choice
of a coordinate system. For instance, a simple scalar x is also a rank-0 tensor, a
vector xi is a rank-1 tensor, and a matrix Xij is a rank-2 tensor. More generally,
given a vector space V with algebraic dual space2 Væ over the real numbers
R, we can define the tensorM as the multilinear function

M : Væ ×Væ × . . .Væ ×V ×V × . . .V −→ R, (2.1)

2 This is the space of all the possible linear transformations that map an object of V into a real
number. For instance, think about V = R2 and the linear functional f : R2 −→ R: it follows that
f(x, y) = ax + by, with a, b two integer numbers, is an element of Væ.
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6 The Structure and Dynamics of Complex Networks

where the number of products is m for the vector space and n for its dual. This
definition formally characterizes a rank-mn tensorMi1i2...inj1j2...jm that is m-covariant
and n-contravariant. In fact, under a change of basisB,m components transform
as the same linear mapping of the change of basis (B), whereas n compo-
nents transform as the inverse one (B−1). Therefore, in general, there are two
types of canonical basis: the covariant basis denoted by ei(a) (a = 1,2, . . . ,m),
which is defined in V, and the contravariant (or dual) basis denoted by ei(b)
(b = 1,2, . . . ,n), which is defined in Væ. If the vector space is Euclidean, the
coordinates of the canonical vectors and their duals are the same, whereas this
is not the case in general. In the following, to define an adjacency matrix, or a
rank-2 adjacency tensor, we will work in the Euclidean space but we will keep
the covariant and contravariant notation, since it will allow us to generalize the
results to the case of non-Euclidean spaces. The interested reader can find more
about the tensorial framework in any good linear algebra textbook, while for
the purpose of this work it is sufficient to understand how we can use tensors
in practice in a few key situations.

Let us start by better defining the canonical vectors in the case of networks.
For a graph with N nodes, the canonical covariant vectors ei(a) defined in
the space of nodes RN are N rank-1 tensors of dimension N with all entries
equal to 0 except for the a-th entry, which is equal to 1. Similarly for canonical
contravariant vectors. The product of canonical vectors gives canonical matri-
ces 3 for example, Eij(ab) = ei(a)ej(b) is a rank-2 covariant tensor with all
components equal to 0 except for the one corresponding to the a-th row and
the b-th column, equal to 1. Similarly, we can build contravariant tensors and
mixed tensors 3 that is, tensors obtained by the product between the covariant
and contravariant vectors.

The careful reader has noticed at this point that we have defined the outer
product of two canonical vectors, also known as the Kronecker product, which
gives a rank-2 tensor as a result. This result is general: the outer product of two
tensors X and Y is a new tensor Z with a number of covariant (contravariant)
indices given by the sum of the number of covariant (contravariant) indices of
X and Y. Therefore, the outer product of two tensors is always a tensor of higher
order than the original ones 3 for example, XkijY

mn
l = Z

kmn
ijl .

It is possible to define also an inner product: in this case, we talk about a
contraction because the rank of resulting tensor is reduced by two units. For
instance, this is the case in the product XkijY

mn
k = Zmnij , where the index k is

covariant for X and contravariant for Y. This operation corresponds to summing
over the components of X and Y identified by the index k. The careful reader has
noticed that we have omitted the summation symbol: this choice 3 known as
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Multilayer Network Science 7

Einstein summation convention 3 is optional and often adopted for simplicity.
In the following, we will make use of this convention.

At this point, we are ready to define the adjacency tensor of a complex
network in terms of canonical vectors [97] as

Wij =
N∑

a,b=1
wabei(a)ej(b) =

N∑

a,b=1
wabEij(ab), (2.2)

where wab is a real number, usually nonnegative, used to encode the inten-
sity of the interaction between nodes a and b, while Eij(ab) ∈ RN×N are the
mixed canonical rank-2 tensors. We might wonder if Wij is a true tensor, or
just a matrix. To this end, it is enough to understand how it transforms under a
change of basis

Bij =
N∑

a=1
e′i(a)ej(a), (2.3)

a linear function that transforms the basis vector set {ei(a)} into a second set
{e′i(a)}. By noting that wab must be invariant with respect to the change of
basis, we have:

W′k
l =

N∑

a,b=1
wabe′k(a)e′l (b) =

N∑

a,b=1
wabBki e

i(a)ej(b)(B−1)
j
l

= Bki

[ N∑

a,b=1
wabei(a)ej(b)

]

(B−1)
j
l = B

k
iW

i
j(B

−1)
j
l (2.4)

3 that is, the adjacency object Wij transforms like a tensor [102]. This result
is important since a tensor is an object with features that, in general, are not
shared by a matrix or, at higher orders, a hypermatrix. In fact, the components
of a tensor can always be arranged into hypermatrices, while the opposite is not
necessarily true.

Since we work in the Euclidean space, we might wonder why we use this
notation and not a simpler one. In general, this is convenient because of
the presence of directed relationships between nodes: to distinguish between
incoming and outgoing directions, it is sufficient to map this information into
covariant and contravariant indices in such a way that the adjacency tensor
Wij represents a linear transformation that maps nodes into a function of their
incoming or outgoing flow. For instance, node a is represented by ei(a) in the
space of nodes and Wijei(a) = wj(a) provides a rank-1 tensor encoding the set
of nodes linked by a, while Wijui = sj, with ui the rank-1 tensor with all com-
ponents equal to 1, provides a rank-1 tensor encoding the outgoing strength of
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8 The Structure and Dynamics of Complex Networks

all nodes. Similarly, Wije
j(a) = wi(a) gives the set of nodes linking to a, while

Wiju
j
= si gives the incoming strength of nodes.

Before moving to the next section, it is useful to define some tensors used
throughout this work. We have just seen the rank-1 13tensor in action: similarly
we can define the rank-2 13tensor Uij = u

iuj or higher-order tensors. Another
fundamental tensor is the Kronecker one, defined by δij , with components equal
to 1 if i = j and equal to 0 otherwise.

2.2 Tensorial Representation of a Multilayer Network
In the previous section, we introduced the fundamental procedure required to
build an adjacency tensor to represent a classical network (a monoplex). Using
a similar procedure, we can build a multilayer adjacency tensor to represent a
multilayer network, as shown in Figure 4. A multilayer system is characterized
by N physical nodes interacting in L distinct ways simultaneously. Each type
of interaction defines a layer. At variance with single-layer networks, there are
more edge sets to encode: as many as the number (L) of layers and, in general, as
many as the number (L(L−1)) of directed pairwise connections between layers,
since we have to specify which node i in a layer α is connected to which node

Figure 4 A system where nodes are characterized by three distinct types of
interactions, encoded by colored layers. Overall, the system is a multilayer
network because to describe relationships we need to specify more than one

network. Units are physical nodes: each one is a set of state nodes or replicas,
each one encoding the identity of the corresponding physical node in each
layer separately. Intralayer edges define connectivity within each layer,

whereas interlayer edges define connectivity across layers. Reproduced with
permission from [93].
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Multilayer Network Science 9

j in a layer β (i, j = 1,2, . . . ,N, α, β = 1,2, . . . ,L).3 Note that, for simplicity,
we are indicating with Greek letters the indices related to layers and with Latin
letters the indices related to nodes.

There are different types of multilayer networks depending on the presence
or absence of links between layers and on the way nodes are defined (see Fig-
ure 5). In the following, we will mostly deal with the class of systems charac-
terized by interlayer connectivity since it is not possible to define a meaningful
multilayer adjacency tensor for the class of edge-colored multigraphs.4

Let us introduce the canonical rank-1 vectors e³(p) (α,p = 1, . . . ,L)
in the space of layers RL, and the corresponding canonical rank-2 tensors
E³
´
(pq) = e³(p)e´(q), similarly to what we have done for monoplexes. It is

straightforward to show [97] that the linear combination of

Mi³j´ =
N∑

a,b=1

L∑

p,q=1
wab(pq)ei(a)ej(b)e³(p)e´(q) (2.5)

fully characterizes a multilinear object in the space RN×L×N×L. This object
is, in fact, the desired multilayer adjacency tensor since, under a change of
coordinates, it transforms like a tensor:

Multilayer Networks

InterconnectedNoninterconnected

Edge-Colored

Multigraph

Multiplex

Interconnected

Interdependent General

Interconnected

Figure 5 Multilayer networks include a broad spectrum of possible models.
Edge-colored networks are useful models when interlayer connectivity is not
well defined: this is the case of a social network where edges can represent

different types of social relationships (e.g., trust, family, business,
etc.) [73, 100, 205]. Conversely, in interconnected networks, interlayer

connectivity is well defined and allows us to model a variety of
systems [98, 102, 214, 232], including those with interdependencies where

nodes control and/or are controlled by nodes in another
network [68, 129, 230, 236, 289]. Reproduced with permission from [93].

3 This simple observation suggests that a good candidate for multilayer adjacency tensor should
be a rank-4 tensor.

4 Note that, instead, it is possible to define a valid hypermatrix encoding this object, and this
hypermatrix can be thought of as an array of matrices [49].
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10 The Structure and Dynamics of Complex Networks

M′i³
j´ =

N∑

a,b=1

L∑

p,q=1
wab(pq)Bike

k(a)(B−1)ljel(b)B̃
³
µ eµ(p)(B̃−1)¶´e¶(q)

= BikB̃
³
µM

kµ
l¶ (B

−1)lj(B̃
−1)¶´ . (2.6)

By indicating with Ei³j´ (ab; pq) = E
i
j(ab)E

³
´
(pq) the canonical rank-4 tensors,

we can simply reduce the definition of the multilayer adjacency tensor to

Mi³j´ =
N∑

a,b=1

L∑

p,q=1
wab(pq)Ei³j´ (ab; pq), (2.7)

where wab(pq) encodes the intensity of the interaction between node a in layer
p and node b in layer q. Note that wab(pp) indicates the weights of the links in
layer p.

It is worth noticing that, as for the space of nodes, in the space of layers,
we can define multilayer 13tensors and Kronecker tensors as Ui³j´ = U

i
jU

³
´

and δi³j´ , respectively. Another important tensor, representing a complete multi-
layer network without self-edges, will be used later in this work to characterize
multilayer triadic closure: for consistency, we prefer to introduce it here as
Fi³j´ = U

i³
j´ − δi³j´ .

At this point, the reader should be familiar enough with tensors to note that
different decompositions are possible. Here, we are not referring to operations
like Tucker decomposition 3 the higher-order generalization of singular value
decomposition (SVD) [281] 3 but to a linear decomposition to highlight the
fundamental components of a multilayer system. In fact, we can identify four
tensors that encode distinct structural information:

mj´i³ = m
j´
i³δ

´
³δ
j
i + m

j´
i³δ

´
³(1 − δ

j
i)

︸                          ︷︷                          ︸

intralayer relationships

+mj´i³(1 − δ
´
³)δ

j
i + m

j´
i³(1 − δ

´
³)(1 − δ

j
i)

︸                                         ︷︷                                         ︸

interlayer relationships

= mi³i³
︸︷︷︸

self-relationships

+ mj³i³
︸︷︷︸

endogenous

+ mj´i³
︸︷︷︸

exogenous

+ mi´i³
︸︷︷︸

intertwining

= Si³(M) + N
j
i³(M) + X

j´
i³(M) + I

´

i³(M) . (2.8)

Here, the components of the tensor are indicated by mj´i³ (i, j = 1,2, . . . ,N and
α, β = 1,2, . . . ,L), while δji and δ´³ indicate the Kronecker delta function in the
space of nodes and layers, respectively. The four tensors encode the following
relationships:

• Intralayer interactions:
3 self-interactions (S): from a node to itself;
3 endogeneous interactions (N): between distinct nodes belonging to the

same layer;
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