Contents

<table>
<thead>
<tr>
<th>Preface to the First Edition</th>
<th>page xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the Second Edition</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface to the Third Edition</td>
<td>xviii</td>
</tr>
<tr>
<td>Preface to the Fourth Edition</td>
<td>xix</td>
</tr>
</tbody>
</table>

1 Background
- What Is a Stellar Photosphere? 1
- Spectral Types 3
- Magnitudes and Color Indices 7
- Stellar Distances and Absolute Magnitudes 10
- The Hertzsprung–Russell Diagram 11
- The Gas Laws 13
- Velocity and Speed Distributions 13
- Atomic Excitation 15
- Ionization 17
- Key Links and Bibliography 19
- Questions and Exercises 20
- References 25

2 Fourier Transforms
- The Definition 27
- The Box and the sinc Function 29
- The Gaussian Function 30
- The Dispersion Function 31
- The Delta Function 31
- Sines, Cosines, and Delta Functions 33
- The Shah Function: an Array of Delta Functions 33
- Data Sampling and Data Windows 34
Table of Contents

Convolutions 35
Convolution with a Delta Function 37
Convolutions of Gaussian and Dispersion Profiles 38
Resolution: Our Blurred Data 38
Sampling and Aliasing 39
Useful Theorems 41
Numerical Calculation of Transforms 42
Noise Transfer between Domains 44
Time Series Analysis 46
Questions and Exercises 48
References 49

3 Spectroscopic Tools 50
Spectrographs: Some General Relations 50
Diffraction Gratings 51
The Blazed Reflection Grating 57
The Blaze Wavelength 61
Shadowing 62
Grating Ghosts 64
The Rest of the Spectrograph 66
The Camera and Linear Dispersion 67
The Camera and Slit Magnification 68
Spectrograph Resolution and the Spectrograph Equation 69
Echelle Spectrographs 71
Spectra from Interferometers 73
Aspects of Telescopes 76
Questions and Exercises 78
References 79

4 Light Detectors 81
Quantum Efficiency and Spectral Response 81
Silicon-Diode Arrays 83
Bias Offset and Dark Leakage 84
Pixel Variations and Flat Fields 85
Linearity 86
Noise in the Measurements 87
Measuring a Detector’s Readout Noise 89
Well Depth and Dynamic Range 91
A Synoptic Review of the Process 92
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Efficiency versus Readout Noise</td>
<td>92</td>
</tr>
<tr>
<td>Cosmic Rays</td>
<td>93</td>
</tr>
<tr>
<td>Photomultiplier Tubes</td>
<td>93</td>
</tr>
<tr>
<td>The Photographic Plate</td>
<td>94</td>
</tr>
<tr>
<td>Questions and Exercises</td>
<td>95</td>
</tr>
<tr>
<td>References</td>
<td>95</td>
</tr>
<tr>
<td>5 Radiation Terms and Definitions</td>
<td></td>
</tr>
<tr>
<td>Specific Intensity: the Cornerstone</td>
<td>97</td>
</tr>
<tr>
<td>Flux: What Stars Send Us</td>
<td>99</td>
</tr>
<tr>
<td>The K Integral and Radiation Pressure</td>
<td>101</td>
</tr>
<tr>
<td>The Absorption Coefficient and Optical Depth</td>
<td>102</td>
</tr>
<tr>
<td>The Emission Coefficient and the Source Function</td>
<td>102</td>
</tr>
<tr>
<td>The Source Function for Pure Absorption</td>
<td>103</td>
</tr>
<tr>
<td>The Source Function for Pure Isotropic Scattering</td>
<td>103</td>
</tr>
<tr>
<td>The Einstein Coefficients</td>
<td>104</td>
</tr>
<tr>
<td>Questions and Exercises</td>
<td>105</td>
</tr>
<tr>
<td>References</td>
<td>105</td>
</tr>
<tr>
<td>6 The Black Body and Its Radiation</td>
<td>106</td>
</tr>
<tr>
<td>Observed Relations</td>
<td>107</td>
</tr>
<tr>
<td>Planck's Radiation Law</td>
<td>110</td>
</tr>
<tr>
<td>Numerical Values of Black-Body Radiation</td>
<td>111</td>
</tr>
<tr>
<td>The Black Body as a Radiation Standard</td>
<td>112</td>
</tr>
<tr>
<td>Questions and Exercises</td>
<td>113</td>
</tr>
<tr>
<td>References</td>
<td>113</td>
</tr>
<tr>
<td>7 Energy Transport in Stellar Photospheres</td>
<td>115</td>
</tr>
<tr>
<td>The Transfer Equation and Its Formal Solution</td>
<td>115</td>
</tr>
<tr>
<td>The Transfer Equation for Stellar Geometries</td>
<td>117</td>
</tr>
<tr>
<td>The Flux Integral</td>
<td>120</td>
</tr>
<tr>
<td>The Mean Intensity and the K Integral</td>
<td>121</td>
</tr>
<tr>
<td>Exponential Integrals</td>
<td>122</td>
</tr>
<tr>
<td>Computation of the Spectrum</td>
<td>123</td>
</tr>
<tr>
<td>Radiative Equilibrium</td>
<td>124</td>
</tr>
<tr>
<td>The Grey Case</td>
<td>126</td>
</tr>
<tr>
<td>Convective Energy Transport and Other Factors</td>
<td>128</td>
</tr>
<tr>
<td>Conditions for Convective Flow</td>
<td>129</td>
</tr>
<tr>
<td>The Mixing-Length Formulation</td>
<td>130</td>
</tr>
</tbody>
</table>
Contents

8 The Continuous Absorption Coefficient 133
 The Origins of Continuous Absorption 133
 The Stimulated Emission Factor 134
 Neutral Hydrogen Bound–Free Absorption 134
 Neutral Hydrogen Free–Free Absorption 138
 The Negative Hydrogen Ion 139
 Other Hydrogen Continuous Absorbers 141
 Absorption by Helium 143
 Electron Scattering 144
 Other Sources of Continuous Absorption 145
 Absorption by Lines 147
 The Total Absorption Coefficient 147
 Questions and Exercises 150
 References 151

9 The Model Photosphere 153
 The Equation of Hydrostatic Equilibrium 154
 The Temperature Distribution in the Solar Photosphere 156
 Temperature Distributions in Other Stars 160
 Metallicity 163
 The P_e–P_c–T Relation 164
 Completion of the Model 167
 The Geometrical Depth 170
 The Main Goal: Computation of the Spectrum 171
 Flux Contribution Functions and the Depth of Formation 171
 Properties of Models: Pressure 173
 The Effect of Metallicity on Pressure 176
 The Effect of Helium Abundance on Pressure 178
 Changes in Pressure with Effective Temperature 178
 Comments 179
 Questions and Exercises 180
 References 180

10 Analysis of Stellar Continua 182
 Ultra-Low-Resolution Spectrographs 182
 Observations Using Standard Stars 184
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Calibration of the Shape of Vega’s Continuum</td>
<td>186</td>
</tr>
<tr>
<td>Absolute Calibration of the Zero Point</td>
<td>188</td>
</tr>
<tr>
<td>Secondary Standard Stars</td>
<td>189</td>
</tr>
<tr>
<td>The Energy Distribution of the Sun</td>
<td>189</td>
</tr>
<tr>
<td>Examples of Stellar Energy Distributions</td>
<td>191</td>
</tr>
<tr>
<td>Continua from Photospheric Models</td>
<td>192</td>
</tr>
<tr>
<td>Line Absorption</td>
<td>195</td>
</tr>
<tr>
<td>Comparison of Model to Stellar Continua</td>
<td>197</td>
</tr>
<tr>
<td>Temperature Errors with Continuum Fitting</td>
<td>201</td>
</tr>
<tr>
<td>Absolute Calibrations with Classical Magnitudes</td>
<td>202</td>
</tr>
<tr>
<td>Bolometric Corrections</td>
<td>203</td>
</tr>
<tr>
<td>Our Next Steps</td>
<td>205</td>
</tr>
<tr>
<td>Questions and Exercises</td>
<td>205</td>
</tr>
<tr>
<td>References</td>
<td>206</td>
</tr>
</tbody>
</table>

11 The Line Absorption Coefficient | 210 |
Natural Atomic Absorption	211
The Oscillator Strength	213
The Damping Constant for Natural Broadening	214
Pressure Broadening	216
The Impact Approximation	217
Theoretical Evaluation of Impact Damping	219
Numerical Values for Impacts with Charged Perturbers	221
Numerical Values for Impacts with Neutral Perturbers	222
Hydrogen Line Broadening	224
Micro-Electric Field Distributions: Static Approximation	225
The Holtsmark Distribution and Hydrogen	227
The Dependence on Depth in the Photosphere	230
Improvements in the $P(\Delta\lambda/E_0)$ Distribution	230
The Hydrogen Absorption Coefficient	231
Thermal Broadening	231
Microturbulence	232
Combining Line Absorption Coefficients	232
The Special Case of Hydrogen	237
Other Broadeners	238
The Mass Absorption Coefficient for Lines	238
Comments	239
Questions and Exercises	239
References	240
12 The Measurement of Spectral Lines 243
 The Coudé Grating Spectrograph 243
 The Bowen Image Slicer 246
 The Richardson Image Slicer 247
 Spectrograph Cameras 249
 Continuum Normalization 250
 The Observed Spectrum versus the True Spectrum 251
 The Instrumental Profile 253
 Delta-Function Spectra 253
 Measurement of the Instrumental Profile 253
 The Instrumental Profile in the Fourier Domain 256
 The Restoration Process 257
 Noise and Its Complications 258
 Fourier Noise Filters 259
 Scattered Light in Spectrographs 261
 Measurement of Scattered Light 263
 Scattered Light Reduction and Correction 264
 Determination of the Dispersion and the Wavelength Scale 266
 Wavelength Changes from Barycentric Motion 268
 Line Measurements with Low Spectral Resolution 268
 Line Broadening and Shape in the Wavelength Domain 270
 Line Broadening and Shape in the Fourier Domain 271
 Measurement of Asymmetry 273
 Measurement of Line Position 274
 Questions and Exercises 276
 References 277

13 The Behavior of Spectral Lines 280
 Why Do Stellar Spectra Have Absorption Lines? 280
 The Flux Integral for Lines 281
 The Behavior of Weak Lines 283
 Above the Photosphere: the Behavior of Very Strong Lines 284
 A More General Approach 285
 Variation of Spectral Lines with Basic Physical Parameters 286
 The Abundance Dependence and the Curve of Growth 287
 The Abundance Dependence and Metallicity 289
 Temperature Dependence for Weak Metal Lines 290
 Temperature Dependence for Strong Metal Lines 293
 Temperature Dependence for Hydrogen Lines 295
Table of Contents

14 The Measurement of Stellar Radii and Temperatures

- The Solar Radius
- Radii from Model Photospheres
- Choosing a Model Using the Paschen Continuum
- The Bolometric Technique
- Choosing a Model Using Spectral Lines
- Absolute Flux Is Needed for Radii
- Stellar Radii Using Interferometers
- Radii from Lunar Occultations
- Radii from Eclipsing Binary
- Radii from Non-Radial Oscillations
- Summary Plot of Radii
- The Surface-Brightness Method
- Stellar Classification by Temperature
- Measured Temperatures
- Stellar Temperatures from Model Photospheres
- The Energy Distribution Thermometer
- Synthetic Color Indices
- Temperature from the Balmer Jump
- Temperature from the Hydrogen Lines
- Metal Lines as Temperature Indicators: Equivalent Widths
- Temperatures from Line-Depth Ratios
- A Summary and Empirical Temperature Calibrations
- Questions and Exercises
- References

15 The Measurement of Surface Gravity

- The Continuum as a Gravity Indicator
- The Gravity Dependence of Hydrogen Lines
- The Balmer-Line Confluence

© in this web service Cambridge University Press
www.cambridge.org
Other Strong Lines: Pressure-Broadened Wings 340
Gravity Determination Using Metal Lines 342
The Helium Abundance Ambiguity 344
Binaries Give Anchor Values 344
Gravity from Oscillations 345
Surface Gravity Summary 345
Empirical Connections to Gravity: the Wilson–Bappu Effect 346
Empirical Connections to Gravity: Macroturbulence and Line Bisectors 348
Gravity and Photospheric Velocity Fields 350
Questions and Exercises 350
References 351

16 The Measurement of Chemical Composition 354
Primitive Abundance Indices 354
Identification of Spectral Lines 355
Equivalent Widths 355
Curves of Growth for Analytical Models: an Historical Note 356
Scaling Relations 356
Curve of Growth Temperature Errors 359
Curve of Growth Electron Pressure Effects 360
Saturation: the Flat Part of the Curve of Growth 361
Damping and the Strong-Line Portion of the Curve of Growth 362
Help from the Solar Spectrum 363
The Solar Chemical Composition 364
Stellar Abundances Using Curves of Growth 367
Metallicity from Equivalent Widths 369
Abundances from Line Profiles and Synthesized Spectra 369
Stellar Abundances: Summaries and Catalogues 371
Galactic Variations 371
The Fuzzy Time Gauge: [Fe/H] 373
Lithium in Population II Stars: Part 1 375
Lithium in Population I Stars 376
Lithium in Population II Stars: Part 2 378
Chemical Evolution in Massive Stars: Nuclear Processes 379
Chemical Evolution by Diffusion 381
Chemically Peculiar Stars 381
Chemical Connections to Exoplanets 383
Questions and Exercises 384
References 385
Table of Contents

17 Velocity Fields in Stellar Photospheres 392
 Examples of Velocity Broadening 393
 Solar Velocity Fields 394
 Including Velocities in Models 397
 From Velocity to Spectrum 397
 Microturbulence in Line Computations 398
 Macroturbulence: the First Signature of Stellar Granulation 398
 (Fictitious) Isotropic Macroturbulence 400
 Radial–Tangential Anisotropic Macroturbulence 400
 Including Rotation 402
 Limb Darkening 403
 Disk Integration Mechanics 405
 Fourier Analysis for Turbulence 406
 A Summary of Macroturbulence Results 410
 A Word about Macroturbulence in Hot Stars 411
 Line Asymmetries: the Second Signature of Stellar Granulation 412
 Line Bisector Shapes: Cool Stars 414
 Line Bisector Shapes: Warm Stars 416
 Blue Shifts: the Third Signature of Stellar Granulation 418
 The Solar Third Signature 419
 Scaling and Shifting: Granulation Velocities and Absolute
 Radial Velocities 420
 Amplification of Issues Concerning Precision Radial Velocities 422
 Intergranular Lane Velocities and Strengths: Bisector Mapping 422
 Explanation of the Granulation Boundary? 425
 High Luminosity Stars: Rougher Terrain 425
 Jitter and Flicker 427
 The Fourier Transform Tool 428
 Models of Motions 431
 Questions and Exercises 434
 References 434

18 Stellar Rotation 439
 Examples of Rotational Broadening 440
 The Doppler-Shift Distribution for Rotation 441
 Rotational Broadening with Macroturbulence and Limb Darkening 444
 Profile Fitting to Find $\nu \sin i$ 446
 The Basics of Rotation Transforms 447
| Contents |
|-----------------|----------|
| Fourier Analysis When $v \sin i$ Is Large | 449 |
| Fourier Analysis for Moderate to Small Rotation | 450 |
| The Solar Rotation | 455 |
| A Peek at Differential Rotation in Other Stars | 458 |
| Statistical Corrections for Axial Projection | 459 |
| Rotational Modulation | 460 |
| Rotation of Hot Stars | 461 |
| Rotation of Cool Dwarfs | 464 |
| Angular Momentum | 466 |
| Magnetic Braking of Rotation | 468 |
| Comments on Magnetic Fields, Measured and Inferred | 470 |
| The Rotation Clock | 471 |
| Rotation of Evolved Stars: Subgiants (IV) and Giants (III) | 471 |
| Rotation of Cool Bright Giants (II) and Supergiants (I) | 474 |
| Rotation of White Dwarfs and Neutron Stars | 474 |
| Rotation of Binary Stars | 475 |
| Rotational Mapping | 477 |
| Questions and Exercises | 479 |
| References | 480 |

Appendix A Useful Constants | 488 |
Appendix B Approximate Physical Parameters of Stars | 489 |
Appendix C Atomic Data | 493 |
Appendix D The Strongest Lines in the Solar Spectrum | 503 |
Appendix E Computation of Random Errors | 504 |
Index | 507 |