Cambridge University Press 978-1-009-07801-6 — The Observation and Analysis of Stellar Photospheres David F. Gray Table of Contents <u>More Information</u>

Contents

Pref	face to the First Edition	<i>page</i> xv
Pref	face to the Second Edition	xvii
Pref	ace to the Third Edition	xviii
Pref	face to the Fourth Edition	xix
1	Background	1
	What Is a Stellar Photosphere?	1
	Spectral Types	3
	Magnitudes and Color Indices	7
	Stellar Distances and Absolute Magnitudes	10
	The Hertzsprung–Russell Diagram	11
	The Gas Laws	13
	Velocity and Speed Distributions	13
	Atomic Excitation	15
	Ionization	17
	Key Links and Bibliography	19
	Questions and Exercises	20
	References	25
2	Fourier Transforms	27
	The Definition	27
	The Box and the sinc Function	29
	The Gaussian Function	30
	The Dispersion Function	31
	The Delta Function	31
	Sines, Cosines, and Delta Functions	33
	The Shah Function: an Array of Delta Functions	33
	Data Sampling and Data Windows	34

v

Cambridge University Press	
978-1-009-07801-6 - The Observation and Analysis of Stellar Photosph	eres
David F. Gray	
Table of Contents	
More Information	

vi	Contents	
	Convolutions	35
	Convolution with a Delta Function	37
	Convolutions of Gaussian and Dispersion Profiles	38
	Resolution: Our Blurred Data	38
	Sampling and Aliasing	39
	Useful Theorems	41
	Numerical Calculation of Transforms	42
	Noise Transfer between Domains	44
	Time Series Analysis	46
	Questions and Exercises	48
	References	49
3	Spectroscopic Tools	50
	Spectrographs: Some General Relations	50
	Diffraction Gratings	51
	The Blazed Reflection Grating	57
	The Blaze Wavelength	61
	Shadowing	62
	Grating Ghosts	64
	The Rest of the Spectrograph	66
	The Camera and Linear Dispersion	67
	The Camera and Slit Magnification	68
	Spectrograph Resolution and the Spectrograph Equation	69
	Echelle Spectrographs	71
	Spectra from Interferometers	73
	Aspects of Telescopes	76
	Questions and Exercises	78
	References	79
4	Light Detectors	81
	Quantum Efficiency and Spectral Response	81
	Silicon-Diode Arrays	83
	Bias Offset and Dark Leakage	84
	Pixel Variations and Flat Fields	85
	Linearity	86
	Noise in the Measurements	87
	Measuring a Detector's Readout Noise	89
	Well Depth and Dynamic Range	91
	A Synoptic Review of the Process	92

	Contents	vii
	Quantum Efficiency versus Readout Noise	92
	Cosmic Rays	93
	Photomultiplier Tubes	93
	The Photographic Plate	94
	Questions and Exercises	95
	References	95
5	Radiation Terms and Definitions	97
	Specific Intensity: the Cornerstone	97
	Flux: What Stars Send Us	99
	The K Integral and Radiation Pressure	101
	The Absorption Coefficient and Optical Depth	102
	The Emission Coefficient and the Source Function	102
	The Source Function for Pure Absorption	103
	The Source Function for Pure Isotropic Scattering	103
	The Einstein Coefficients	104
	Questions and Exercises	105
	References	105
6	The Black Body and Its Radiation	106
	Observed Relations	107
	Planck's Radiation Law	110
	Numerical Values of Black-Body Radiation	111
	The Black Body as a Radiation Standard	112
	Questions and Exercises	113
	References	113
7	Energy Transport in Stellar Photospheres	115
	The Transfer Equation and Its Formal Solution	115
	The Transfer Equation for Stellar Geometries	117
	The Flux Integral	120
	The Mean Intensity and the K Integral	121
	Exponential Integrals	122
	Computation of the Spectrum	123
	Radiative Equilibrium	124
	The Grey Case	126
	Convective Energy Transport and Other Factors	128
	Conditions for Convective Flow	129
	The Mixing-Length Formulation	130

viii	Contents	
	Questions and Exercises	131
	References	131
8	The Continuous Absorption Coefficient	133
	The Origins of Continuous Absorption	133
	The Stimulated Emission Factor	134
	Neutral Hydrogen Bound–Free Absorption	134
	Neutral Hydrogen Free–Free Absorption	138
	The Negative Hydrogen Ion	139
	Other Hydrogen Continuous Absorbers	141
	Absorption by Helium	143
	Electron Scattering	144
	Other Sources of Continuous Absorption	145
	Absorption by Lines	147
	The Total Absorption Coefficient	147
	Questions and Exercises	150
	References	151
9	The Model Photosphere	153
	The Equation of Hydrostatic Equilibrium	154
	The Temperature Distribution in the Solar Photosphere	156
	Temperature Distributions in Other Stars	160
	Metallicity	163
	The $P_{e} - P_{e} - T$ Relation	164
	Completion of the Model	167
	The Geometrical Depth	170
	The Main Goal: Computation of the Spectrum	171
	Flux Contribution Functions and the Depth of Formation	171
	Properties of Models: Pressure	173
	The Effect of Metallicity on Pressure	176
	The Effect of Helium Abundance on Pressure	178
	Changes in Pressure with Effective Temperature	178
	Comments	179
	Questions and Exercises	180
	References	180
10	Analysis of Stellar Continua	182
	Ultra-Low-Resolution Spectrographs	182
	Observations Using Standard Stars	184

	Contents	ix
	Absolute Calibration of the Shape of Vega's Continuum	186
	Absolute Calibration of the Zero Point	188
	Secondary Standard Stars	189
	The Energy Distribution of the Sun	189
	Examples of Stellar Energy Distributions	191
	Continua from Photospheric Models	192
	Line Absorption	195
	Comparison of Model to Stellar Continua	197
	Temperature Errors with Continuum Fitting	201
	Absolute Calibrations with Classical Magnitudes	202
	Bolometric Corrections	203
	Our Next Steps	205
	Questions and Exercises	205
	References	206
11	The Line Absorption Coefficient	210
	Natural Atomic Absorption	211
	The Oscillator Strength	213
	The Damping Constant for Natural Broadening	214
	Pressure Broadening	216
	The Impact Approximation	217
	Theoretical Evaluation of Impact Damping	219
	Numerical Values for Impacts with Charged Perturbers	221
	Numerical Values for Impacts with Neutral Perturbers	222
	Hydrogen Line Broadening	224
	Micro-Electric Field Distributions: Static Approximation	225
	The Holtsmark Distribution and Hydrogen	227
	The Dependence on Depth in the Photosphere	230
	Improvements in the $P(\Delta\lambda/E_0)$ Distribution	230
	The Hydrogen Absorption Coefficient	231
	Thermal Broadening	231
	Microturbulence	232
	Combining Line Absorption Coefficients	232
	The Special Case of Hydrogen	237
	Other Broadeners	238
	The Mass Absorption Coefficient for Lines	238
	Comments	239
	Questions and Exercises	239
	References	240

х	Contents	
12	The Measurement of Spectral Lines	243
12	The Coudé Grating Spectrograph	243
	The Bowen Image Slicer	245
	The Richardson Image Slicer	240
	Spectrograph Cameras	249
	Continuum Normalization	250
	The Observed Spectrum versus the True Spectrum	251
	The Instrumental Profile	253
	Delta-Function Spectra	253
	Measurement of the Instrumental Profile	255
	The Instrumental Profile in the Fourier Domain	256
	The Restoration Process	257
	Noise and Its Complications	258
	Fourier Noise Filters	259
	Scattered Light in Spectrographs	261
	Measurement of Scattered Light	263
	Scattered Light Reduction and Correction	264
	Determination of the Dispersion and the Wavelength Scale	266
	Wavelength Changes from Barycentric Motion	268
	Line Measurements with Low Spectral Resolution	268
	Line Broadening and Shape in the Wavelength Domain	270
	Line Broadening and Shape in the Fourier Domain	271
	Measurement of Asymmetry	273
	Measurement of Line Position	274
	Questions and Exercises	276
	References	277
13	The Behavior of Spectral Lines	280
	Why Do Stellar Spectra Have Absorption Lines?	280
	The Flux Integral for Lines	281
	The Behavior of Weak Lines	283
	Above the Photosphere: the Behavior of Very Strong Lines	284
	A More General Approach	285
	Variation of Spectral Lines with Basic Physical Parameters	286
	The Abundance Dependence and the Curve of Growth	287
	The Abundance Dependence and Metallicity	289
	Temperature Dependence for Weak Metal Lines	290
	Temperature Dependence for Strong Metal Lines	293
	Temperature Dependence for Hydrogen Lines	295

Cambridge University Press
978-1-009-07801-6 — The Observation and Analysis of Stellar Photospheres
David F. Gray
Table of Contents
More Information

	Contents	xi
	The Pressure Dependence	296
	Pressure Effects for Weak Metal Lines	297
	Pressure Effects for Strong Metal Lines	298
	Pressure Effects for Hydrogen Lines	300
	Additional Factors	301
	Onward	302
	Questions and Exercises	302
	References	302
14	The Measurement of Stellar Radii and Temperatures	304
	The Solar Radius	305
	Radii from Model Photospheres	306
	Choosing a Model Using the Paschen Continuum	307
	The Bolometric Technique	308
	Choosing a Model Using Spectral Lines	308
	Absolute Flux Is Needed for Radii	310
	Stellar Radii Using Interferometers	310
	Radii from Lunar Occultations	312
	Radii from Eclipsing Binary	313
	Radii from Non-Radial Oscillations	314
	Summary Plot of Radii	315
	The Surface-Brightness Method	316
	Stellar Classification by Temperature	319
	Measured Temperatures	319
	Stellar Temperatures from Model Photospheres	320
	The Energy Distribution Thermometer	320
	Synthetic Color Indices	321
	Temperature from the Balmer Jump	322
	Temperature from the Hydrogen Lines	323
	Metal Lines as Temperature Indicators: Equivalent Widths	325
	Temperatures from Line-Depth Ratios	325
	A Summary and Empirical Temperature Calibrations	328
	Questions and Exercises	330
	References	331
15	The Measurement of Surface Gravity	336
	The Continuum as a Gravity Indicator	336
	The Gravity Dependence of Hydrogen Lines	338
	The Balmer-Line Confluence	340

Cambridge University Press 978-1-009-07801-6 — The Observation and Analysis of Stellar Photospheres David F. Gray Table of Contents <u>More Information</u>

xii	Contents	
	Other Strong Lines: Pressure-Broadened Wings	340
	Gravity Determination Using Metal Lines	342
	The Helium Abundance Ambiguity	344
	Binaries Give Anchor Values	344
	Gravity from Oscillations	345
	Surface Gravity Summary	345
	Empirical Connections to Gravity: the Wilson-Bappu Effect	346
	Empirical Connections to Gravity: Macroturbulence	
	and Line Bisectors	348
	Gravity and Photospheric Velocity Fields	350
	Questions and Exercises	350
	References	351
16	The Measurement of Chemical Composition	354
	Primitive Abundance Indices	354
	Identification of Spectral Lines	355
	Equivalent Widths	355
	Curves of Growth for Analytical Models: an Historical Note	356
	Scaling Relations	356
	Curve of Growth Temperature Errors	359
	Curve of Growth Electron Pressure Effects	360
	Saturation: the Flat Part of the Curve of Growth	361
	Damping and the Strong-Line Portion of the Curve of Growth	362
	Help from the Solar Spectrum	363
	The Solar Chemical Composition	364
	Stellar Abundances Using Curves of Growth	367
	Metallicity from Equivalent Widths	369
	Abundances from Line Profiles and Synthesized Spectra	369
	Stellar Abundances: Summaries and Catalogues	371
	Galactic Variations	371
	The Fuzzy Time Gauge: [Fe/H]	373
	Lithium in Population II Stars: Part 1	375
	Lithium in Population I Stars	3/6
	Lithium in Population II Stars: Part 2 Chaminal Free lation in Maximum Stars, Nuclear December 2	3/8
	Chemical Evolution in Massive Stars: Nuclear Processes	3/9 201
	Chemical Evolution by Diffusion	381 201
	Chemically Peculiar Stars	381 202
	Questions and Exercises	202
	Pafarangas	204 205
	NCICICIIUCS	202

Cambridge University Press	
978-1-009-07801-6 — The Observation and Analysis of Stellar Photosphe	res
David F. Gray	
Table of Contents	
More Information	

	Contents	xiii
17	Velocity Fields in Stellar Photospheres	392
17	Examples of Velocity Broadening	393
	Solar Velocity Fields	394
	Including Velocities in Models	397
	From Velocity to Spectrum	397
	Microturbulence in Line Computations	398
	Macroturbulence: the First Signature of Stellar Granulation	398
	(Fictitious) Isotropic Macroturbulence	400
	Radial–Tangential Anisotropic Macroturbulence	400
	Including Rotation	402
	Limb Darkening	403
	Disk Integration Mechanics	405
	Fourier Analysis for Turbulence	406
	A Summary of Macroturbulence Results	410
	A Word about Macroturbulence in Hot Stars	411
	Line Asymmetries: the Second Signature of Stellar Granulation	412
	Line Bisector Shapes: Cool Stars	414
	Line Bisector Shapes: Warm Stars	416
	The Granulation Boundary	416
	Blue Shifts: the Third Signature of Stellar Granulation	418
	The Solar Third Signature	419
	Scaling and Shifting: Granulation Velocities and Absolute	
	Radial Velocities	420
	Amplification of Issues Concerning Precision Radial Velocities	422
	Intergranular Lane Velocities and Strengths: Bisector Mapping	422
	Explanation of the Granulation Boundary?	425
	High Luminosity Stars: Rougher Terrain	425
	Jitter and Flicker	427
	The Fourier Transform Tool	428
	Models of Motions	431
	Questions and Exercises	434
	References	434
18	Stellar Rotation	439
	Examples of Rotational Broadening	440
	The Doppler-Shift Distribution for Rotation	441
	Rotational Broadening with Macroturbulence and Limb Darkening	444
	Profile Fitting to Find $v \sin i$	446
	The Basics of Rotation Transforms	447

Cambridge University Press 978-1-009-07801-6 — The Observation and Analysis of Stellar Photospheres David F. Gray Table of Contents <u>More Information</u>

xiv	Contents	
	Fourier Analysis When $v \sin i$ Is Large	449
	Fourier Analysis for Moderate to Small Rotation	450
	The Solar Rotation	455
	A Peek at Differential Rotation in Other Stars	458
	Statistical Corrections for Axial Projection	459
	Rotational Modulation	460
	Rotation of Hot Stars	461
	Rotation of Cool Dwarfs	464
	Angular Momentum	466
	Magnetic Braking of Rotation	468
	Comments on Magnetic Fields, Measured and Inferred	470
	The Rotation Clock	471
	Rotation of Evolved Stars: Subgiants (IV) and Giants (III)	471
	Rotation of Cool Bright Giants (II) and Supergiants (I)	474
	Rotation of White Dwarfs and Neutron Stars	474
	Rotation of Binary Stars	475
	Rotational Mapping	477
	Questions and Exercises	479
	References	480
Appendix A Useful Constants		488
Appendix B Approximate Physical Parameters of Stars		489
Appendix C Atomic Data		493
Appendix D The Strongest Lines in the Solar Spectrum		503
Appendix E Computation of Random Errors		504
Index		507