Contents

List of Figures xiii

Introduction xvii
Concurrency and Parallelism xvii
Why Study Parallel Programming xvii
What Is in This Book xix

1 An Introduction to Parallel Computer Architecture 1
1.1 Parallel Organization 1
SISD: Single Instruction, Single Data 2
SIMD: Single Instruction, Multiple Data 2
MIMD: Multiple Instruction, Multiple Data 3
MISD: Multiple Instruction, Single Data 3
1.2 System Architecture 4
1.3 CPU Architecture 5
1.4 Memory and Cache 8
1.5 GPU Architecture 11
1.6 Interconnect Architecture 13
Routing 13
Links 13
Types and Quality of Networks 14
Torus Network 16
Hypercube Network 18
Cross-Bar Network 19
Shuffle-Exchange Network 20
Clos Network 21
Tree Network 22
Network Comparison 24
1.7 Summary 24

2 Parallel Programming Models 31
2.1 Distributed-Memory Programming Model 32
2.2 Shared-Memory Programming Model 33
2.3 Task Graph Model 35
2.4 Variants of Task Parallelism 37
2.5 Summary 39
Contents

3 Parallel Performance Analysis 45
 3.1 Simple Parallel Model 46
 3.2 Bulk-Synchronous Parallel Model 47
 BSP Computation Time 48
 BSP Example 49
 3.3 PRAM Model 52
 PRAM Computation Time 55
 PRAM Example 55
 3.4 Parallel Performance Evaluation 57
 Latency and Throughput 57
 Speed-up 58
 Cost 58
 Efficiency 59
 Scalability 59
 Iso-efficiency 60
 3.5 Parallel Work 62
 Brent’s Work-Time Scheduling Principle 63
 3.6 Amdahl’s Law 63
 3.7 Gustafson’s Law 65
 3.8 Karp–Flatt Metric 66
 3.9 Summary 67

4 Synchronization and Communication Primitives 75
 4.1 Threads and Processes 75
 4.2 Race Condition and Consistency of State 77
 Sequential Consistency 78
 Causal Consistency 82
 FIFO and Processor Consistency 82
 Weak Consistency 84
 Linearizability 85
 4.3 Synchronization 85
 Synchronization Condition 86
 Protocol Control 86
 Progress 86
 Synchronization Hazards 88
 4.4 Mutual Exclusion 90
 Lock 90
 Peterson’s Algorithm 91
Table of Contents

Bakery Algorithm 94
Compare and Swap 95
Transactional Memory 96
Barrier and Consensus 97
4.5 Communication 99
Point-to-Point Communication 99
RPC 102
Collective Communication 102
4.6 Summary 104
5 Parallel Program Design 111
5.1 Design Steps 112
Granularity 112
Communication 113
Synchronization 114
Load Balance 115
5.2 Task Decomposition 115
Domain Decomposition 116
Functional Decomposition 120
Task Graph Metrics 123
5.3 Task Execution 124
Preliminary Task Mapping 125
Task Scheduling Framework 126
Centralized Push Scheduling Strategy 127
Distributed Push Scheduling 129
Pull Scheduling 129
5.4 Input/Output 130
5.5 Debugging and Profiling 132
5.6 Summary 133
6 Middleware: The Practice of Parallel Programming 139
6.1 OpenMP 139
Preliminaries 140
OpenMP Thread Creation 140
OpenMP Memory Model 141
OpenMP Reduction 143
OpenMP Synchronization 144
Sharing a Loop’s Work 147
Other Work-Sharing Pragmas 150
Table of Contents

SIMD Pragma 151
Tasks 153

6.2 MPI 155
 MPI Send and Receive 156
 Message-Passing Synchronization 158
 MPI Data Types 161
 MPI Collective Communication 164
 MPI Barrier 167
 MPI Reduction 167
 One-Sided Communication 169
 MPI File IO 173
 MPI Groups and Communicators 176
 MPI Dynamic Parallelism 177
 MPI Process Topology 178

6.3 Chapel 180
 Partitioned Global Address Space 180
 Chapel Tasks 181
 Chapel Variable Scope 183

6.4 Map-Reduce 184
 Parallel Implementation 185
 Hadoop 186

6.5 GPU Programming 188
 OpenMP GPU Off-Load 188
 Data and Function on Device 191
 Thread Blocks in OpenMP 193
 CUDA 194
 CUDA Programming Model 195
 CPU–GPU Memory Transfer 197
 Concurrent Kernels 198
 CUDA Synchronization 199
 CUDA Shared Memory 202
 CUDA Parallel Memory Access 203
 False Sharing 206

6.6 Summary 207

7 Parallel Algorithms and Techniques 211
 7.1 Divide and Conquer: Prefix-Sum 212
 Parallel Prefix-Sum: Method 1 214
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Prefix-Sum: Method 2</td>
<td>215</td>
</tr>
<tr>
<td>Parallel Prefix-Sum: Method 3</td>
<td>215</td>
</tr>
<tr>
<td>7.2 Divide and Conquer: Merge Two Sorted Lists</td>
<td>217</td>
</tr>
<tr>
<td>Parallel Merge: Method 1</td>
<td>218</td>
</tr>
<tr>
<td>Parallel Merge: Method 2</td>
<td>219</td>
</tr>
<tr>
<td>Parallel Merge: Method 3</td>
<td>222</td>
</tr>
<tr>
<td>Parallel Merge: Method 4</td>
<td>226</td>
</tr>
<tr>
<td>7.3 Accelerated Cascading: Find Minima</td>
<td>227</td>
</tr>
<tr>
<td>7.4 Recursive Doubling: List Ranking</td>
<td>230</td>
</tr>
<tr>
<td>7.5 Recursive Doubling: Euler Tour</td>
<td>231</td>
</tr>
<tr>
<td>7.6 Recursive Doubling: Connected Components</td>
<td>233</td>
</tr>
<tr>
<td>7.7 Pipelining: Merge-Sort</td>
<td>238</td>
</tr>
<tr>
<td>Basic Merge-Sort</td>
<td>238</td>
</tr>
<tr>
<td>Pipelined Merges</td>
<td>240</td>
</tr>
<tr>
<td>4-Cover Property Analysis</td>
<td>245</td>
</tr>
<tr>
<td>Merge Operation per Tick</td>
<td>248</td>
</tr>
<tr>
<td>7.8 Application of Prefix-Sum: Radix-Sort</td>
<td>249</td>
</tr>
<tr>
<td>7.9 Exploiting Parallelism: Quick-Sort</td>
<td>250</td>
</tr>
<tr>
<td>7.10 Fixing Processor Count: Sample-Sort</td>
<td>254</td>
</tr>
<tr>
<td>7.11 Exploiting Parallelism: Minimum Spanning Tree</td>
<td>257</td>
</tr>
<tr>
<td>Parallel Priority Queue</td>
<td>260</td>
</tr>
<tr>
<td>MST with Parallel Priority Queue</td>
<td>263</td>
</tr>
<tr>
<td>7.12 Summary</td>
<td>264</td>
</tr>
</tbody>
</table>

Bibliography | 269 |
Index | 277 |