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Abstract In this expository paper, we show that the Deligne–Mumford

moduli space of stable curves is projective over Spec(Z). The proof we

present is due to Kollár. Ampleness of a line bundle is deduced from

nefness of a related vector bundle via the ampleness lemma, a classifying

map construction. The main positivity result concerns the pushforward

of relative dualizing sheaves on families of stable curves over a smooth

projective curve.

Introduction

Let M𝑔 be the moduli stack of stable curves of genus 𝑔 ≥ 2 and write

𝑀𝑔 for its corresponding moduli space. We prove that the moduli of

stable curves is projective in the following sense, see Theorem 1.7.2:

Theorem The Deligne–Mumford moduli space 𝑀𝑔 of stable curves of

genus 𝑔 ≥ 2 is a projective scheme over Spec(Z).

In particular, this means that 𝑀𝑔, which is a priori just an algebraic

space, is actually a projective scheme over Z. Together with the work of

Deligne and Mumford [9] (see also [30, Theorem 0E9C]) this means that

𝑀𝑔 is actually an irreducible projective scheme over Z.

We explain a proof due to Kollár in [21]. Specifically, the task of

showing that a certain line bundle on 𝑀𝑔 is ample is transferred, via

1

www.cambridge.org/9781009054850
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-05485-0 — Stacks Project Expository Collection
Edited by Pieter Belmans , Wei Ho , Aise Johan de Jong 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Cheng, Lian, Murayama

Kollár’s ampleness lemma, to the problem of showing that a related vector

bundle is nef on 𝑀𝑔. Since nefness is a condition that only depends on the

behaviour of the vector bundle upon restriction to curves, projectivity is

thus reduced to a problem regarding positivity of one-parameter families

of stable curves.

Kollár’s method differs from other existing proofs of projectivity of

𝑀𝑔 in at least two main ways: First, the technique is independent of

the methods of geometric invariant theory (GIT), on which the proofs

of [29, 11, 7] rely. In a similar spirit, in [1], which is Chapter 3 of this

volume, the projectivity of the moduli space of semistable vector bundles

on a curve is established without using GIT.

Second, Kollár’s criterion does not require one to directly check that

a line bundle on the moduli space is ample, in contrast to the approach

of Knudsen and Mumford [19, 17, 18]; rather, one only needs to show

that some vector bundle on the moduli space is nef. As such, this method

has since been used in other settings, such as in the moduli of weighted

stable curves [14], of stable varieties [22], and, recently, of K-polystable

Fano varieties [6, 33].

An outline of this article is as follows. We set up notation in regards to

the moduli of curves in Section 1.1, after which we begin in Sections 1.2–

1.4 with some material on positivity of sheaves. In Section 1.5, we explain

Kollár’s ampleness lemma; see Proposition 1.5.4. In Section 1.6, we prove

the main positivity statement: the pushforward of the relative dualizing

sheaf of a 1-parameter family of stable curves of genus at least 2 is nef;

see Theorem 1.6.10. Finally, we put everything together in Section 1.7 to

show that 𝑀𝑔 is projective over Z when 𝑔 ≥ 2.

Conventions Throughout, 𝑘 will denote a field. Following the conven-

tions of the Stacks project, a variety is a separated integral scheme of

finite type over a field 𝑘 and a curve is a variety of dimension 1, see [30,

Definitions 020D and 0A23]. Given a scheme 𝑋 over 𝑘 and a sheaf F of

O𝑋 -modules, we write

ℎ𝑖 (𝑋, F ) ··= dim𝑘 (𝐻
𝑖 (𝑋, F )) for all 𝑖 ∈ Z.

1.1 Stable curves

In this section, we record the definition of the moduli problem in which

we are primarily interested, namely that of the moduli space of stable

curves. The main references are [9] and [30, Chapter 0DMG].
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1 Projectivity of the moduli of curves 3

First we define what we mean by a family of curves. Compare the

following with [30, Situation 0D4Z], and with [30, Definitions 0C47,

0C5A, and 0E75]. We diverge slightly from the Stacks project in that

we require our families of nodal curves to have geometrically connected

fibres. Caution: the closed fibres of a family of nodal curves are not

curves in the sense of our conventions, as they may be reducible. See [30,

Section 0C58] for a discussion on such terminology.

Definition 1.1.1 Let 𝑆 be a scheme.

(i) A family of nodal curves over 𝑆 is a flat, proper, finitely presented

morphism of schemes 𝑓 : 𝑋 → 𝑆 of relative dimension 1 such that all

geometric fibres are connected and smooth except at possibly finitely

many nodes.

(ii) A family of stable curves over 𝑆 is a family of nodal curves such that

the geometric fibres have arithmetic genus ≥ 2 and do not contain

rational tails or bridges.

(iii) A family of stable curves over 𝑆 is said to have genus 𝑔 if all geometric

fibres have genus 𝑔.

Condition (ii) is equivalent to ampleness of the dualizing sheaf, and

also finiteness of automorphism groups. See [30, Section 0E73] for

details. For the following, see [30, Definition 0E77].

Definition 1.1.2 For 𝑔 ≥ 2, the moduli stack of stable curves of genus 𝑔

is the category M𝑔 fibred in groupoids whose category of sections over

a scheme 𝑆 has objects given by families of stable curves of genus 𝑔 over

𝑆, and morphisms given by isomorphisms of families over 𝑆.

The stack M𝑔 is a smooth, proper Deligne–Mumford stack over

Spec(Z); see [30, Theorem 0E9C]. Classically, and in many geometric

applications such as [13], it is convenient to work with a space rather

than the stack. As such, it is useful to extract an algebraic space which

is, in some sense, the closest approximation of the stack, obtained by

“forgetting” the automorphism groups: this is the notion of a uniform

categorical moduli space or simply a moduli space of a stack; see [30,

Definition 0DUG].

Lemma 1.1.3 The stack M𝑔 admits a uniform categorical moduli

space 𝑓𝑔 : M𝑔 → 𝑀𝑔 such that 𝑓𝑔 is separated, quasi-compact, and a

universal homeomorphism.

Proof The stack M𝑔 has finite inertia by [30, Lemmas 0E7A and
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0DSW], so the existence of 𝑓𝑔 follows from the Keel–Mori theorem [30,

Theorem 0DUT]. �

Definition 1.1.4 The space 𝑀𝑔 is the moduli space of curves of genus 𝑔.

Our primary goal is to show that 𝑀𝑔 is projective over Z; see Theorem

1.7.2. Thus we must exhibit an ample invertible sheaf on 𝑀𝑔. We obtain

invertible sheaves on the moduli space by taking powers of invertible

sheaves on the stack M𝑔, via the following general fact:

Lemma 1.1.5 Let X be an algebraic stack. Assume the inertia IX → X

is finite and let 𝑓 : X → 𝑀 be its moduli space, as in [30, Theorem

0DUT]. Then

𝑓 ∗ : Pic(𝑀) → Pic(X)

is injective. If X is furthermore quasi-compact, then the cokernel of 𝑓 ∗ is

annihilated by a positive integer.

Proof For the injectivity, note that 𝑓∗OX � O𝑀 as 𝑀 is initial for

morphisms from X to algebraic spaces and the structure sheaf represents

the functor Hom(−,A1). Thus if N ∈ Pic(𝑀) is such that 𝑓 ∗N � OX ,

the canonical map N → 𝑓∗ 𝑓
∗N → O𝑀 is an isomorphism as N is

locally trivial. This further shows that if N1,N2 ∈ Pic(𝑀) are such that

there exists an isomorphism 𝜑 : 𝑓 ∗N1 → 𝑓 ∗N2, then there is a unique

isomorphism 𝜓 : N1 → N2 such that 𝑓 ∗𝜓 = 𝜑.

We now show that, if X is furthermore quasi-compact, then there

is a positive integer 𝑛 such that, for every L ∈ Pic(X), L⊗𝑛
� 𝑓 ∗N

for some N ∈ Pic(𝑀). For this, we may replace X by any X′ with a

surjective separated étale morphism ℎ : X′ → X of algebraic stacks

inducing isomorphisms on automorphism groups. Indeed, [30, Lemma

0DUV] gives the cartesian square

X′ X

𝑀 ′ 𝑀

ℎ

𝑓 ′ 𝑓

where 𝑀 ′ is the moduli space of X′. If there were N ′ ∈ Pic(𝑀 ′) such

that ℎ∗L⊗𝑛
� 𝑓 ′∗N ′, then the injectivity of 𝑓 ′∗ : Pic(𝑀 ′) → Pic(X′)

shows that the étale descent datum for ℎ∗L⊗𝑛 over X induces an étale

descent datum for N ′ over 𝑀 , yielding N ∈ Pic(𝑀) as above.

Choose such a cover ℎ : X′ → X as in [30, Lemma 0DUE]: X′
=∐

𝑖∈𝐼 X𝑖 where each X𝑖 is a quotient stack [𝑈𝑖/𝑅𝑖], (𝑈𝑖 , 𝑅𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑐𝑖) is
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1 Projectivity of the moduli of curves 5

a groupoid scheme with 𝑈𝑖 and 𝑅𝑖 affine, and 𝑠𝑖 , 𝑡𝑖 : 𝑅𝑖 → 𝑈𝑖 are finite

locally free of some constant rank; see [30, Lemmas 0DUM and 03BI].

Since X is quasi-compact, we are reduced to the case where X is a finite

disjoint union of such stacks X𝑖. Let 𝑓𝑖 : X𝑖 → 𝑀𝑖 be the moduli space.

If there exists a positive integer 𝑛𝑖 annihilating the cokernel of 𝑓 ∗𝑖 , then

the least common multiple 𝑛 of the 𝑛𝑖 annihilates the cokernel of 𝑓 ∗.

Thus it suffices to consider the case where X = [𝑈/𝑅] is as above. By

[30, Proposition 06WT], an invertible OX-module may be represented

as a pair (L, 𝛼) consisting of an invertible O𝑈 -module L together with

an isomorphism 𝛼 : 𝑡∗L → 𝑠∗L of O𝑅-modules as in [30, Definition

03LI]. We claim that if 𝑛 is the rank of the morphisms 𝑠, 𝑡 : 𝑅 → 𝑈,

then (L⊗𝑛, 𝛼𝑛) is in the image of 𝑓 ∗. Namely, writing 𝜋 : 𝑈 → 𝑀 , there

exists an invertible O𝑀 -module N and an isomorphism of invertible

modules (𝜋∗N , 𝛼can) � (L⊗𝑛, 𝛼𝑛) on the groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐), where

𝛼can is the identity map; this makes sense since 𝜋 ◦ 𝑡 = 𝜋 ◦ 𝑡 as maps

𝑅 → 𝑀 .

Construct N as follows. First, if 𝑈 =

⋃
𝑈𝑖 is any affine open cover,

then the 𝑉𝑖 ··= 𝜋(𝑈𝑖) together form an affine open cover of 𝑀. That the

𝑉𝑖 form an open cover follows from the fact that 𝜋 is the composition

of the faithfully flat and finitely presented morphism 𝑈 → X and the

universal homeomorphism X → 𝑀; see [30, Lemmas 01UA and 0DUP].

That the 𝑉𝑖 are affine is because 𝜋 is integral; see [30, Lemmas 03BJ and

05YU]. Next, since 𝑡 : 𝑅 → 𝑈 is finite locally free, [30, Lemma 0BCY]

constructs an invertible O𝑈 -module L ′ ··= Norm𝑡 (𝑠
∗L) as follows.

Let ({𝑈𝑖}, {𝑢𝑖 𝑗}) be a system of cocycles locally defining L, so that

𝑈 =

⋃
𝑈𝑖 is an affine open cover and 𝑢𝑖 𝑗 ∈ O∗

𝑈 (𝑈𝑖 ∩𝑈 𝑗) are units. Then

L ′ is defined by the cocycles ({𝑈𝑖}, {𝑢
′
𝑖 𝑗}) with 𝑢′𝑖 𝑗

··= Norm𝑡♯ (𝑠
♯ (𝑢𝑖 𝑗)).

Finally, setting 𝑉𝑖 ··= 𝜋(𝑈𝑖), [30, Lemma 03BH] implies that the 𝑢′𝑖 𝑗 lie

in the subgroup O∗
𝑀 (𝑉𝑖 ∩ 𝑉 𝑗) ⊆ O∗

𝑈 (𝑈𝑖 ∩𝑈 𝑗) of 𝑅-invariant units, so

({𝑉𝑖}, {𝑢
′
𝑖 𝑗}) forms a system of cocycles on 𝑀 defining an invertible

module N .

On the one hand, the construction implies L ′
� 𝜋∗N . On the other

hand, [30, Lemma 0BCZ] yields an isomorphism

Norm𝑡 (𝛼) : L⊗𝑛
� Norm𝑡 (𝑡

∗L) → Norm𝑡 (𝑠
∗L) = L ′

� 𝜋∗N .

Thus it suffices to show that the diagram of isomorphisms

𝑡∗L⊗𝑛 𝑠∗L⊗𝑛

𝑡∗𝜋∗N 𝑠∗𝜋∗N

𝛼𝑛

𝑡∗ Norm𝑡 (𝛼) 𝑠∗ Norm𝑡 (𝛼)

𝛼can
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6 Cheng, Lian, Murayama

is commutative. By properties of the norm, the compatibilities of 𝛼 from

[30, Definition 03LH(1)], and the diagram of [30, Lemma 03BH], we

have

𝛼𝑛
= Norm𝑐 (𝑐

∗𝛼) = Norm𝑐 (pr∗1 𝛼 ◦ pr∗0 𝛼)

= Norm𝑐 (pr∗1 𝛼) ◦ Norm𝑐 (pr∗0 𝛼) = 𝑠∗ Norm𝑠 (𝛼) ◦ 𝑡
∗ Norm𝑡 (𝛼).

Since 𝑠 = 𝑡 ◦ 𝑖 where 𝑖 : 𝑅 → 𝑅 is the inverse, Norm𝑠 (𝛼) = Norm𝑡 (𝑖
∗𝛼).

Therefore

𝑠∗ Norm𝑡 (𝛼) ◦ 𝛼
𝑛 ◦ 𝑡∗ Norm𝑡 (𝛼)

−1
= 𝑠∗(Norm𝑡 (𝛼 ◦ 𝑖∗𝛼)).

This is the identity since, by [30, Lemma 077Q], 𝑖∗𝛼 is the inverse of

𝛼. �

We now specify some invertible sheaves on M𝑔. By [30, Definition

06TR and Lemma 06WI], the data of such a sheaf L are the following: for

each family of stable curves 𝑋 → 𝑆, an invertible O𝑆-module L(𝑋 → 𝑆),

and, for every cartesian square

𝑋 ′ 𝑋

𝑆′ 𝑆,

𝑓 ′

𝑔′

𝑓

𝑔

an isomorphism of invertible O𝑆′-modules

𝜑𝑔 : 𝑔∗L(𝑋 → 𝑆) � L(𝑋 ′ → 𝑆′)

such that for every composition of cartesian squares

𝑋 ′′ 𝑋 ′ 𝑋

𝑆′′ 𝑆′ 𝑆
ℎ 𝑔

the isomorphisms are subject to the cocycle condition

ℎ∗(𝑔∗L(𝑋 → 𝑆)) ℎ∗L(𝑋 ′ → 𝑆′)

(𝑔ℎ)∗L(𝑋 → 𝑆) L(𝑋 ′′ → 𝑆′′).

ℎ∗𝜑𝑔

� 𝜑ℎ

𝜑𝑔ℎ

Definition 1.1.6 For each integer 𝑚 ≥ 1, define an invertible sheaf

𝜆𝑚 on M𝑔 as follows. Given a family of stable curves 𝑓 : 𝑋 → 𝑆, let

𝜔⊗𝑚
𝑋/𝑆

be its relative dualizing sheaf; see [30, Definition 0E6Q]. This is
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1 Projectivity of the moduli of curves 7

an invertible O𝑋 -module. Note that the sheaves 𝑓∗𝜔
⊗𝑚
𝑋/𝑆

are locally free

on 𝑆. Set

𝜆𝑚( 𝑓 : 𝑋 → 𝑆) ··= det( 𝑓∗𝜔
⊗𝑚
𝑋/𝑆

).

Given a cartesian square as above, we have isomorphisms 𝜑𝑔 given by

𝑔∗ det( 𝑓∗𝜔
⊗𝑚
𝑋/𝑆

) � det(𝑔∗ 𝑓∗𝜔
⊗𝑚
𝑋/𝑆

) → det( 𝑓 ′∗𝑔
′∗𝜔⊗𝑚

𝑋/𝑆
) � det( 𝑓 ′∗𝜔

⊗𝑚
𝑋 ′/𝑆′),

the functorial base change maps, and the fact that the formation of

𝜔𝑋/𝑆 commutes with arbitrary base change; see [30, Lemma 0E6R].

Functoriality ensures that these satisfy the required cocycle condition.

Our goal will be to show that there is some 𝑚 such that 𝜆𝑚 descends

to an ample invertible sheaf on 𝑀𝑔.

1.2 Nakai–Moishezon criterion for ampleness

In this section, we discuss the Nakai–Moishezon criterion for ampleness,

relating the ampleness of an invertible sheaf with the positivity of

intersection numbers. We directly prove the criterion for proper algebraic

spaces over a field in Proposition 1.2.4 (compare with [21, Theorem

3.11]); the proof closely follows that of [16, Section III.1, Theorem 1],

with suitable modifications. Using [30, Lemma 0D3A], one can also

formulate a relative version; see, for example, [15, Proposition 2.10].

In the following, we work with proper algebraic spaces over a field.

For generalities on algebraic spaces, see [30, Part 0ELT].

We will use numerical intersection theory on spaces as developed in

[30, Section 0DN3]; see also [30, Section 0BEL] and [26, Section 1.1.C]

for the situation of varieties. The main construction is the intersection

number (L1 · · · L𝑑 · 𝑍) between a closed subspace 𝜄 : 𝑍 → 𝑋 of positive

dimension 𝑑 and invertibleO𝑋 -modulesL1, . . . ,L𝑑: this is the coefficient

of 𝑛1 · · · 𝑛𝑑 in the numerical polynomial

𝜒(𝑋, 𝜄∗O𝑍 ⊗ L
⊗𝑛1

1
⊗ · · · ⊗ L

⊗𝑛𝑑
𝑑

) = 𝜒(𝑍,L
⊗𝑛1

1
⊗ · · · ⊗ L

⊗𝑛𝑑
𝑑

|𝑍 ).

See [30, Definition 0EDF].

The Nakai–Moishezon criterion relates ampleness to the positivity of

intersection numbers. To formulate this succinctly, we make a definition.

In the following, recall that a separated algebraic space 𝑍 is integral if

and only if it is reduced and |𝑍 | is irreducible; see [30, Definition 0AD4]

and [30, Section 03I7].
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8 Cheng, Lian, Murayama

Definition 1.2.1 Let 𝑋 be a proper algebraic space over 𝑘 and let L be

an invertible O𝑋 -module. We say that L has positive degree if, for every

integral closed subspace 𝑍 of 𝑋 of positive dimension 𝑑, (L𝑑 · 𝑍) > 0.

Note that the Stacks project only defines the degree of an invertible

sheaf L either when L is ample or when dim(𝑋) ≤ 1; see [30, Definitions

0BEW and 0AYR]. The content of the Nakai–Moishezon criterion is

that if L has positive degree, then L is ample. Thus this is a fortiori

compatible with the conventions of the Stacks project.

The main technical property we need is the permanence of positivity

under finite morphisms.

Lemma 1.2.2 Let 𝑋 be a proper algebraic space over 𝑘 . Let 𝑓 : 𝑌 → 𝑋

be a finite morphism of algebraic spaces. Let L be an invertible O𝑋 -

module. If L has positive degree, then 𝑓 ∗L has positive degree.

Proof This follows from the compatibility of numerical intersection

numbers and pullbacks: if 𝑍 ⊂ 𝑌 is a proper integral closed subspace of

dimension 𝑑, then

( 𝑓 ∗L𝑑 · 𝑍) = deg(𝑍 → 𝑓 (𝑍)) (L𝑑 · 𝑓 (𝑍))

where deg(𝑍 → 𝑓 (𝑍)) is positive as 𝑓 is finite; see [30, Lemma

0EDJ]. �

The following is the core of the inductive proof of the criterion:

Lemma 1.2.3 Let 𝑋 be a proper algebraic space over 𝑘 and let 𝐷 be

an effective Cartier divisor of 𝑋 . If O𝑋 (𝐷) |𝐷 is ample, then O𝑋 (𝑚𝐷) is

globally generated for all 𝑚 ≫ 0.

Proof For each 𝑚 ≥ 0, there is a short exact sequence

0 → O𝑋 ((𝑚 − 1)𝐷) → O𝑋 (𝑚𝐷) → O𝑋 (𝑚𝐷) |𝐷 → 0.

Since O𝑋 (𝐷) |𝐷 is ample, Serre vanishing [30, Lemma 0GFA] gives an

integer 𝑚1 such that 𝐻1(𝐷,O𝑋 (𝑚𝐷) |𝐷) = 0 for 𝑚 ≥ 𝑚1. Hence the

maps

𝜌𝑚 : 𝐻1(𝑋,O𝑋 ((𝑚 − 1)𝐷)) → 𝐻1(𝑋,O𝑋 (𝑚𝐷)),

arising from the long exact sequence on cohomology, are surjective for

all 𝑚 ≥ 𝑚1, yielding a nonincreasing sequence of nonnegative integers

ℎ1(𝑋,O𝑋 (𝑚𝐷)) ≥ ℎ1(𝑋,O𝑋 ((𝑚 + 1)𝐷)) ≥ · · · .

www.cambridge.org/9781009054850
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-05485-0 — Stacks Project Expository Collection
Edited by Pieter Belmans , Wei Ho , Aise Johan de Jong 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Projectivity of the moduli of curves 9

There is some 𝑚2 ≥ 𝑚1 after which the sequence stabilizes, so that, for

all 𝑚 ≥ 𝑚2, the 𝜌𝑚 are bijective and the restriction maps

𝐻0(𝑋,O𝑋 (𝑚𝐷)) → 𝐻0(𝐷,O𝑋 (𝑚𝐷) |𝐷)

are surjective. Finally, since O𝑋 (𝐷) |𝐷 is ample, there exists some 𝑚3

such that O𝑋 (𝑚𝐷) |𝐷 is generated by its global sections for all 𝑚 ≥ 𝑚3.

Let 𝑚0 ··= max(𝑚2, 𝑚3). We show that the evaluation maps

𝐻0(𝑋,O𝑋 (𝑚𝐷)) ⊗𝑘 O𝑋 → O𝑋 (𝑚𝐷)

are surjective for all 𝑚 ≥ 𝑚0. We verify this on stalks. For 𝑥 ∈ |𝑋 \ 𝐷 |,

a global section defining 𝑚𝐷 restricts to a unit in O𝑋 (𝑚𝐷)𝑥 and thus

generates the stalk. So consider 𝑥 ∈ |𝐷 | and let 𝜅(𝑥) be the residue field

of 𝐷 at 𝑥; see [30, Definition 0EMW]. Since 𝐷 → 𝑋 is a monomorphism,

𝜅(𝑥) is also the residue field at 𝑥 of 𝑋 by [30, Lemma 0EMX]. Consider

the diagram

𝐻0(𝑋,O𝑋 (𝑚𝐷)) ⊗𝑘 𝜅(𝑥) O𝑋 (𝑚𝐷) ⊗O𝑋
𝜅(𝑥)

𝐻0(𝐷,O𝑋 (𝑚𝐷) |𝐷) ⊗𝑘 𝜅(𝑥) O𝑋 (𝑚𝐷) |𝐷 ⊗O𝐷
𝜅(𝑥)

≃

obtained from the evaluation and restriction maps upon taking the fibre

at 𝑥. By our choice of 𝑚0, the restriction map on the left is surjective and

O𝑋 (𝑚𝐷) |𝐷 is globally generated, so the bottom map is surjective. Since

the right map is an isomorphism, commutativity of the diagram implies

that the top map is surjective. Nakayama’s lemma then implies that

the evaluation map is surjective on the local ring O𝑋 (𝑚𝐷)𝑥 . Hence the

evaluation map is surjective, meaning O𝑋 (𝑚𝐷) is globally generated. �

Proposition 1.2.4 (Nakai–Moishezon criterion) Let 𝑋 be a proper

algebraic space over 𝑘 . Let L be an invertible O𝑋 -module. Then L is

ample on 𝑋 if and only if L has positive degree.

Proof If L is ample, then 𝑋 is a scheme, L is ample in the schematic

sense, and L has positive degree; see [30, Lemmas 0D32 and 0BEV].

Assuming L has positive degree, we show it is ample. We proceed

by induction on dim(𝑋). When dim(𝑋) = 0, since 𝑋 is separated it is a

scheme by [30, Theorem 086U], in which case the result is clear. When

dim(𝑋) = 1, our assumption simplifies to deg(L) > 0. Now apply [30,

Proposition 09YC] to obtain a finite surjective morphism 𝑓 : 𝑌 → 𝑋

from a scheme 𝑌 . Lemma 1.2.2 shows that deg( 𝑓 ∗L) > 0 and so [30,

Lemma 0B5X] gives the ampleness of 𝑓 ∗L. Since 𝑓 is finite, [30, Lemma
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10 Cheng, Lian, Murayama

0GFB] shows L is also ample. So we assume that dim(𝑋) ≥ 2 and that

the criterion holds for all proper spaces over 𝑘 of lower dimension.

Step 1 Using [30, Lemmas 0GFB, 0GFA], and Lemma 1.2.2, we

may replace 𝑋 by the reduction of an irreducible component and L by

its restriction to assume that 𝑋 is integral.

Step 2 We show that some power of L is effective. As 𝑋 is integral, the

discussion of [30, Section 0ENV] shows thatL has a regular meromorphic

section 𝑠. Consider its sheaf of denominators I1, i.e., the ideal sheaf in

O𝑋 whose sections over 𝑉 ∈ 𝑋étale are

I1(𝑉) ··= { 𝑓 ∈ O𝑋 (𝑉) | 𝑓 𝑠 ∈ L(𝑉)};

compare [30, Definition 02P1]. Set I2 ··= I1 ⊗ L∨. Since the formation

of the I𝑗 , 𝑗 = 1, 2, is étale local, their properties may be reduced to

the schematic case. Thus [30, Lemma 02P0] shows that the I𝑗 are

quasi-coherent sheaves of ideals and the corresponding closed subspaces

𝑌 𝑗 = 𝑉 (I𝑗) satisfy dim(𝑌 𝑗) < dim(𝑋). By Lemma 1.2.2, induction

applies so the L|𝑌𝑗 are ample. By construction, for each 𝑚 ≥ 0, there are

exact sequences

0 I1 ⊗ L⊗𝑚 L⊗𝑚 L⊗𝑚 |𝑌1
0

0 I2 ⊗ L⊗(𝑚−1) L⊗(𝑚−1) L⊗(𝑚−1) |𝑌2
0.

Serre vanishing, [30, Lemma 0B5U], gives some 𝑚0 ≥ 0 such that, for all

𝑚 ≥ 𝑚0, 𝐻𝑖 (𝑌 𝑗 ,L
⊗𝑚 |𝑌𝑗 ) = 0 for all 𝑖 > 0 and 𝑗 = 1, 2. Thus comparing

the long exact sequences in cohomology for the sequences above yields

ℎ𝑖 (𝑋,L⊗𝑚) = ℎ𝑖 (𝑋,I1 ⊗ L⊗𝑚)

= ℎ𝑖 (𝑋,I2 ⊗ L⊗(𝑚−1) ) = ℎ𝑖 (𝑋,L⊗(𝑚−1) )

for all 𝑖 ≥ 2 and 𝑚 ≥ 𝑚0. Hence, for all 𝑚 ≥ 𝑚0,

𝑁 :=
∑dim(𝑋 )

𝑖=2
(−1)𝑖 ℎ𝑖 (𝑋,L⊗𝑚)

is a constant. By definition of the intersection numbers, the leading

coefficient of the numerical polynomial 𝜒(𝑋,L⊗𝑚) is (Ldim 𝑋 · 𝑋) and

this is positive by assumption. Thus

𝜒(𝑋,L⊗𝑚) = ℎ0(𝑋,L⊗𝑚) − ℎ1(𝑋,L⊗𝑚) + 𝑁 → ∞ as 𝑚 → ∞.

So ℎ0(𝑋,L⊗𝑚) → ∞ and L⊗𝑚 is effective for 𝑚 ≫ 0. Ampleness is
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